Arabic numeral arithmetic: examples
\[ \newcommand{\expr}[3]{\begin{array}{c} #1 \\ \bbox[lightblue,5px]{#2} \end{array} ⊢ #3} \newcommand{\ct}[1]{\bbox[font-size: 0.8em]{\mathsf{#1}}} \newcommand{\abbr}[1]{\bbox[transform: scale(0.95)]{\mathtt{#1}}} \def\True{\ct{T}} \def\False{\ct{F}} \]
It’s example time.
Example 1
For the first example let’s show that \(⌜537⌝\) is an \(np\) (and that it has a particular interpretation in \(\mathcal{M}_{ANA}\)).
\[\begin{prooftree} \AxiomC{$⟨⌜5⌝, I_{ANA}(⌜5⌝)⟩ ⊢ atom$} \RightLabel{Rule 2}\UnaryInfC{$⟨⌜5⌝, I_{ANA}(⌜5⌝)⟩ ⊢ n$} \AxiomC{$⟨⌜3⌝, I_{ANA}(⌜3⌝)⟩ ⊢ atom$} \RightLabel{Rule 2}\UnaryInfC{$⟨⌜3⌝, I_{ANA}(⌜3⌝)⟩ ⊢ n$} \AxiomC{$⟨⌜7⌝, I_{ANA}(⌜7⌝)⟩ ⊢ atom$} \RightLabel{Rule 2}\UnaryInfC{$⟨⌜7⌝, I_{ANA}(⌜7⌝)⟩ ⊢ n$} \RightLabel{Rule 3}\BinaryInfC{$⟨⌜37⌝, I_{ANA}(⌜3⌝) * 10^{length(⌜7⌝)} + I_{ANA}(⌜7⌝)⟩ ⊢ n$} \RightLabel{Rule 3}\BinaryInfC{$⟨⌜537⌝, I_{ANA}(⌜5⌝) * 10^{length(⌜37⌝)} + I_{ANA}(⌜3⌝) * 10^{length(⌜7⌝)} + I_{ANA}(⌜7⌝)⟩ ⊢ n$} \RightLabel{Rule 4}\UnaryInfC{$⟨⌜537⌝, I_{ANA}(⌜5⌝) * 10^{length(⌜37⌝)} + I_{ANA}(⌜3⌝) * 10^{length(⌜7⌝)} + I_{ANA}(⌜7⌝)⟩ ⊢ np$} \end{prooftree}\]What’s proved is the statement in the very last line of this derivation: that the string \(⌜537⌝\) has the interpretation \[I_{ANA}(⌜5⌝) * 10^{length(⌜37⌝)} + I_{ANA}(⌜3⌝) * 10^{length(⌜7⌝)} + I_{ANA}(⌜7⌝)\] and the category \(np\). Since we know that
- \(I_{ANA}(⌜5⌝) = 5\),
- \(I_{ANA}(⌜3⌝) = 3\), and
- \(I_{ANA}(⌜7⌝) = 7\)
as well as what \(length(⌜37⌝)\) and \(length(⌜7⌝)\) are—\(2\) and \(1\), respectively—the very last line of this proof/derivation can be rewritten as
\[5 * 10^{2} + 3 * 10^{1} + 7\]
which, of course, is \(537\).
Example 2
For the second example, we’ll show that \(⌜((37 + 1) × 0) = 5⌝\) is an \(s\), and also what its interpretation in \(\mathcal{M}_{ANA}\) is.
\[\begin{prooftree} \AxiomC{$⟨⌜3⌝, I_{ANA}(⌜3⌝)⟩ ⊢ atom$} \RightLabel{Rule 2}\UnaryInfC{$⟨⌜3⌝, I_{ANA}(⌜3⌝)⟩ ⊢ n$} \AxiomC{$⟨⌜7⌝, I_{ANA}(⌜7⌝)⟩ ⊢ atom$} \RightLabel{Rule 2}\UnaryInfC{$⟨⌜7⌝, I_{ANA}(⌜7⌝)⟩ ⊢ n$} \RightLabel{Rule 3}\BinaryInfC{$⟨⌜37⌝, I_{ANA}(⌜3⌝) * 10^{length(⌜7⌝)} + I_{ANA}(⌜7⌝)⟩ ⊢ n$} \RightLabel{Rule 4}\UnaryInfC{$⟨⌜37⌝, I_{ANA}(⌜3⌝) * 10^{length(⌜7⌝)} + I_{ANA}(⌜7⌝)⟩ ⊢ np$} \AxiomC{$⟨⌜1⌝, I_{ANA}(⌜1⌝)⟩ ⊢ atom$} \RightLabel{Rule 2}\UnaryInfC{$⌜1⌝, I_{ANA}(⌜1⌝)⟩ ⊢ n$} \RightLabel{Rule 4}\UnaryInfC{$⌜1⌝, I_{ANA}(⌜1⌝)⟩ ⊢ np$} \RightLabel{Rule 5}\BinaryInfC{$⟨⌜(37 + 1)⌝, I_{ANA}(⌜3⌝) * 10^{length(⌜7⌝)} + I_{ANA}(⌜7⌝) + I_{ANA}(⌜1⌝)⟩ ⊢ np$} \AxiomC{$⟨⌜0⌝, I_{ANA}(⌜0⌝)⟩ ⊢ atom$} \RightLabel{Rule 2}\UnaryInfC{$⟨⌜0⌝, I_{ANA}(⌜0⌝)⟩ ⊢ n$} \RightLabel{Rule 4}\UnaryInfC{$⟨⌜0⌝, I_{ANA}(⌜0⌝)⟩ ⊢ np$} \RightLabel{Rule 5}\BinaryInfC{$⟨⌜((37 + 1) × 0)⌝, (I_{ANA}(⌜3⌝) * 10^{length(⌜7⌝)} + I_{ANA}(⌜7⌝) + I_{ANA}(⌜1⌝)) * I_{ANA}(⌜0⌝)⟩ ⊢ np$} \AxiomC{$⟨⌜5⌝, I_{ANA}(⌜5⌝)⟩ ⊢ atom$} \RightLabel{Rule 2}\UnaryInfC{$⟨⌜5⌝, I_{ANA}(⌜5⌝)⟩ ⊢ n$} \RightLabel{Rule 4}\UnaryInfC{$⟨⌜5⌝, I_{ANA}(⌜5⌝)⟩ ⊢ np$} \RightLabel{Rule 6}\BinaryInfC{$⟨⌜((37 + 1) × 0) = 5⌝, (I_{ANA}(⌜3⌝) * 10^{length(⌜7⌝)} + I_{ANA}(⌜7⌝) + I_{ANA}(⌜1⌝)) * I_{ANA}(⌜0⌝) = I_{ANA}(⌜5⌝)⟩ ⊢ s$} \end{prooftree}\]Indeed, we’ve proved that \(⌜((37 + 1) × 0 = 5⌝\) is an \(s\). What we’ve also shown is that the interpretation of this \(s\) is \(\True\) just in case
\[(I_{ANA}(⌜3⌝) * 10^{length(⌜7⌝)} + I_{ANA}(⌜7⌝) + I_{ANA}(⌜1⌝)) * I_{ANA}(⌜0⌝)\]
is equal to \(I_{ANA}(⌜5⌝)\).
In fact, since we know that \[I_{ANA}(⌜0⌝) = 0\] and that multiplying anything by \(0\) gives you \(0\), we can determine that
\[(I_{ANA}(⌜3⌝) * 10^{length(⌜7⌝)} + I_{ANA}(⌜7⌝) + I_{ANA}(⌜1⌝)) * I_{ANA}(⌜0⌝)\]
is equal to \(0\) without even worrying about what
\[I_{ANA}(⌜3⌝) * 10^{length(⌜7⌝)} + I_{ANA}(⌜7⌝) + I_{ANA}(⌜1⌝)\]
evaluates to. Though, if we were to evaluate it, we’d of course find that it evaluates to \(38\).
Since \(I_{ANA}(⌜5⌝)\) is \(5\), the interpretation of this sentence is \(\True\) if and only if \(0\) and \(5\) are the same number. They’re not, so the interpretation is \(\False\).