
Jean-Louis Krivine

LAMBDA-CALCULUS

TYPES AND MODELS

Translated from french

by René Cori

To my daughter

Contents

Introduction 5

1 Substitution and beta-conversion 7

Simple substitution . 8

Alpha-equivalence and substitution . 12

Beta-conversion . 17

Eta-conversion . 24

2 Representation of recursive functions 29

Head normal forms . 29

Representable functions . 31

Fixed point combinators . 34

The second fixed point theorem . 37

3 Intersection type systems 41

System DΩ . 41

System D . 50

Typings for normal terms . 54

4 Normalization and standardization 61

Typings for normalizable terms . 61

Strong normalization . 68

βI -reduction . 70

The λI -calculus . 72

βη-reduction . 74

The finite developments theorem . 77

The standardization theorem . 81

5 The Böhm theorem 87

3

4 CONTENTS

6 Combinatory logic 95
Combinatory algebras . 95
Extensionality axioms . 98
Curry’s equations . 101
Translation of λ-calculus . 105

7 Models of lambda-calculus 111
Functional models . 111
Spaces of continuous increasing functions 116
Spaces of initial segments . 117
Applications . 125
Retractions . 130
Qualitative domains and stable functions 134

8 System F 145
Definition of system F types . 145
Typing rules for system F . 146
The strong normalization theorem . 150
Data types in system F . 153
Positive second order quantifiers . 159

9 Second order functional arithmetic 165
Second order predicate calculus . 165
System F A2 . 172
Realizability . 179
Data types . 182
Programming in F A2 . 185

10 Representable functions in system F 193
Gödel’s ¬-translation . 196
Undecidability of strong normalization . 199

Bibliography 203

INTRODUCTION

The lambda-calculus was invented in the early 1930’s, by A. Church, and has
been considerably developed since then. This book is an introduction to some
aspects of the theory today : pure lambda-calculus, combinatory logic, seman-
tics (models) of lambda-calculus, type systems. All these areas will be dealt
with, only partially, of course, but in such a way, I think, as to illustrate their
interdependence, and the essential unity of the subject.
No specific knowledge is required from the reader, but some familiarity with
mathematical logic is expected ; in chapter 2, the concept of recursive function
is used ; parts of chapters 6 and 7, as well as chapter 9, involve elementary topics
in predicate calculus and model theory.

For about fifteen years, the typed lambda-calculus has provoked a great deal
of interest, because of its close connections with programming languages, and
of the link that it establishes between the concept of program and that of in-
tuitionistic proof : this is known as the “ Curry-Howard correspondence ”. Af-
ter the first type system, which was Curry’s, many others appeared : for ex-
ample, de Bruijn’s Automath system, Girard’s system F , Martin-Löf’s theory of
intuitionistic types, Coquand-Huet’s theory of constructions, Constable’s Nuprl
system...

This book will first introduce Coppo and Dezani’s intersection type system.
Here it will be called “ system DΩ ”, and will be used to prove some fundamen-
tal theorems of pure lambda-calculus. It is also connected with denotational
semantics : in Engeler and Scott’s models, the interpretation of a term is essen-
tially the set of its types. Next, Girard’s system F of second order types will be
considered, together with a simple extension, denoted by F A2 (second order
functional arithmetic). These types have a very transparent logical structure,
and a great expressive power. They allow the Curry-Howard correspondence to
be seen clearly, as well as the possibilities, and the difficulties, of using these
systems as programming languages.

A programming language is a tool for writing a program in machine lan-
guage (which is called the object code), in such a way as to keep control, as
far as possible, on what will be done during its execution. To do so, the primi-

5

6 Lambda-calculus, types and models

tive method would be to write directly, in one column, machine language, and,
alongside, comments indicating what the corresponding instructions are sup-
posed to do. The result of this is called a “ source program ”. Here, the aim of
the “ compilation ”, which transforms the source program into an object code,
will be to get rid of the comments.

Such a language is said to be primitive, or “ low level ”, because the com-
puter does not deal with the comments at all ; they are entirely intended for
the programmer. In a higher level language, part of these comments would
be checked by the computer, and the remainder left for the programmer ; the
“ mechanized ” part of the comments is then called a “ typing ”. A language is
considered high level if the type system is rich. In such a case, the aim of the
compilation would be, first of all, to check the types, then, as before, to get rid
of them, along with the rest of the comments.

The typed lambda-calculus can be used as a mathematical model for this
situation ; the role of the machine language is played by the pure lambda-
calculus. The type systems that are then considered are, in general, much more
rich than those of the actual programming languages ; in fact, the types could
almost be complete specifications of the programs, while the type checking
(compilation) would be a “ program proof ”. These remarks are sufficient to ex-
plain the great interest there would be in constructing a programming language
based on typed lambda-calculus ; but the problems, theoretical and practical,
of such an enterprise are far from being fully resolved.

This book is the product of a D.E.A. (postgraduate) course at the University
of Paris 7. I would like to thank the students and researchers of the “ Equipe
de Logique ” of Paris 7, for their comments and their contributions to the early
versions of the manuscript, in particular Marouan Ajlani, René Cori, Jean-Yves
Girard and Michel Parigot.
Finally, it gives me much pleasure to dedicate this book to my daughter Sonia.

Paris, 1990

I want to thank also Darij Grinberg and Robert Solovay, who have corrected
errors in the proofs of corollary 1.3 and theorem 7.16.

Paris, 2011

Chapter 1

Substitution and beta-conversion

The terms of the λ-calculus (also called λ-terms) are finite sequences formed
with the following symbols : variables x, y, . . . (the set of variables is assumed to
be countable), left and right parenthesis, and the letter λ. They are obtained by
applying, a finite number of times, the following rules :

• any variable x is a λ-term ;
• whenever t and u are λ-terms, then so is (t)u ;
• whenever t is a λ-term and x is a variable, then λx t is a λ-term.

The set of all terms of the λ-calculus will be denoted by L.

The term (t)u should be thought of as “ t applied to u ” ; it will also be denoted
by tu if there is no ambiguity ; the term (. . . (((t)u1)u2) . . .)uk will also be written
(t)u1u2 . . .uk or tu1u2 . . .uk . Thus, for example, (t)uv , (tu)v and tuv denote
the same term.
By convention, when k = 0, (t)u1u2 . . .uk will denote the term t .

The free occurrences of a variable x in a term t are defined, by induction, as
follows :

if t is the variable x, then the occurrence of x in t is free ;

if t = (u)v , then the free occurrences of x in t are those of x in u and
v ;

if t = λy u, the free occurrences of x in t are those of x in u, except
if x = y ; in that case, no occurrence of x in t is free.

A free variable in t is a variable which has at least one free occurrence in t .
A term which has no free variable is called a closed term.
A bound variable in t is a variable which occurs in t just after the symbol λ.

7

8 Lambda-calculus, types and models

1. Simple substitution

Let t , t1, . . . , tk be terms and x1, . . . , xk distinct variables ; we define the term
t<t1/x1, . . . , tk /xk> as the result of the replacement of every free occurrence of
xi in t by ti (1 ≤ i ≤ k). The definition is by induction on t , as follows :

if t = xi (1 ≤ i ≤ k), then t<t1/x1, . . . , tk /xk>= ti ;
if t is a variable 6= x1, . . . , xk , then t<t1/x1, . . . , tk /xk>= t ;
if t = (u)v , then

t<t1/x1, . . . , tk /xk>= (u<t1/x1, . . . , tk /xk>)v<t1/x1, . . . , tk /xk> ;
if t =λxi u (1 ≤ i ≤ k), then

t<t1/x1, . . . , tk /xk>=λxi u<t1/x1, . . . , ti−1/xi−1, ti+1/xi+1, . . . , tk /xk> ;
if t =λx u, with x 6= x1, . . . , xk , then

t<t1/x1, . . . , tk /xk>=λx u<t1/x1, . . . , tk /xk>.

Such a substitution will be called a simple one, in order to distinguish it from
the substitution defined further on, which needs a change of bound variables.
Simple substitution corresponds, in computer science, to the notion of macro-
instruction. It is also called substitution with capture of variables.

With the notation t<t1/x1, . . . , tk /xk>, it is understood that x1, . . . , xk are distinct
variables. Moreover, their order does not matter ; in other words :

t<t1/x1, . . . , tk /xk>=t<tσ1/xσ1, . . . , tσk /xσk> for any permutationσ of {1, . . . ,k}.

The proof is immediate by induction on the length of t ; also immediate is the
following :

If t1, . . . , tk are variables, then the term t<t1/x1, . . . , tk /xk> has the same length
as t .

Lemma 1.1. If the variable x1 is not free in the term t of L, then :
t<t1/x1, . . . , tk /xk>= t<t2/x2, . . . , tk /xk>.

Proof by induction on t . The result is clear when t is either a variable or a term
of the form (u)v . Now suppose t =λx u ; then :

if x = x1, then :
t<t1/x1, . . . , tk /xk>=λx1 u<t2/x2, . . . , tk /xk>= t<t2/x2, . . . , tk /xk> ;

if x = xi with i 6= 1, say x = xk , then :
t<t1/x1, . . . , tk /xk>=λxk u<t1/x1, . . . , tk−1/xk−1>
=λxk u<t2/x2, . . . , tk−1/xk−1>
(by induction hypothesis, since x1 is not free in u)
= t<t2/x2, . . . , tk /xk> ;

if x 6= x1, . . . , xk , then :
t<t1/x1, . . . , tk /xk>=λx u<t1/x1, . . . , tk /xk>=λx u<t2/x2, . . . , tk /xk>
(by induction hypothesis, since x1 is not free in u) = t<t2/x2, . . . , tk /xk>.

Q.E.D.

Chapter 1. Substitution and beta-conversion 9

Remark. Usually, in textbooks on λ-calculus (for example in [Bar84]), the simple sub-

stitution is considered for only one variable. In a substitution such as t<u/x>, the term

t is then called a context or a term with holes ; the free occurrences of the variable x in

t are called holes and denoted by []. The term t<u/x> is then denoted as t [u] and is

called the result of the “ substitution of the term u in the holes of the context t ”.

The major problem about simple substitution is that it is not stable under com-
position ; if you consider two substitutions :
<t1/x1, . . . , tm/xm> and <u1/y1, . . . ,un/yn>
then the application t 7→ t<t1/x1, . . . , tm/xm><u1/y1, . . . ,un/yn> is not, in gen-
eral, given by a substitution. For instance, we have :
y<y/x><x/y>= x and z<y/x><x/y>= z for every variable z 6= y . Thus, if the
operation <y/x><x/y> was a substitution, it would be <x/y>. But this is false,
because λy x<y/x><x/y>=λy y and λy x<x/y>=λy x.

In the following lemma, we give a partial answer to this problem. The definitive
answer is given in the next section, with a new kind of substitution, which is
stable by composition.

Lemma 1.2.
Let {x1, . . . , xm}, {y1, . . . , yn} be two finite sets of variables, and suppose that their
common elements are x1 = y1, . . . , xk = yk . Let t , t1, . . . , tm ,u1, . . . ,un be terms
of L, and assume that no free variable of t1, . . . , tm is bound in t . Then :
t<t1/x1, . . . , tm/xm><u1/y1, . . . ,un/yn>

= t<t ′1/x1, . . . , t ′m/xm ,uk+1/yk+1, . . . ,un/yn>,
where t ′i = ti<u1/y1, . . . ,un/yn>.

Proof by induction on the length of t :
i) t is a variable : the possible cases are t = xi (1 ≤ i ≤ m), t = y j (k +1 ≤ j ≤ n),
or t is another variable. In each of them, the result is immediate.
ii) t = (u)v ; the result is obvious, by applying the induction hypothesis to u and
v .
iii) t = λx u ; we first observe that the result follows immediately from the in-
duction hypothesis for u, if x 6= x1, . . . , xm , y1, . . . , yn .

If x = xi (1 ≤ i ≤ k), say x1, then :
t<t1/x1, . . . , tm/xm>=λx1 u<t2/x2, . . . , tm/xm>.

Since x1 = y1, we have :
t<t1/x1, . . . , tm/xm><u1/y1, . . . ,un/yn>

=λx1 u<t2/x2, . . . , tm/xm><u2/y2, . . . ,un/yn>.
By the induction hypothesis for u, we get :
u<t2/x2, . . . , tm/xm><u2/y2, . . . ,un/yn>

= u<t ′′2 /x2, . . . , t ′′m/xm ,uk+1/yk+1, . . . ,un/yn>
with t ′′i = ti<u2/y2, . . . ,un/yn>.

10 Lambda-calculus, types and models

But, since x1 = y1 is bound in t , by hypothesis, it is not a free variable of ti . From
lemma 1.1, it follows that t ′′i = ti<u1/y1, . . . ,un/yn>= t ′i . Therefore :
t<t1/x1, . . . , tm/xm><u1/y1, . . . ,un/yn>

=λx1 u<t ′2/x2, . . . , t ′m/xm ,uk+1/yk+1, . . . ,un/yn>
= t<t ′1/x1, . . . , t ′m/xm ,uk+1/yk+1, . . . ,un/yn>.

If x = xi (k +1 ≤ i ≤ m), say xm , then :
t<t1/x1, . . . , tm/xm>=λxm u<t1/x1, . . . , tm−1/xm−1>,

and since xm 6= y1, . . . , yn , we get :
t<t1/x1, . . . , tm/xm><u1/y1, . . . ,un/yn>

=λxm u<t1/x1, . . . , tm−1/xm−1><u1/y1, . . . ,un/yn>.
By the induction hypothesis for u, we get :
u<t1/x1, . . . , tm−1/xm−1><u1/y1, . . . ,un/yn>

= u<t ′1/x1, . . . , t ′m−1/xm−1,uk+1/yk+1, . . . ,un/yn>,
Therefore t<t1/x1, . . . , tm/xm><u1/y1, . . . ,un/yn>

=λxm u<t ′1/x1, . . . , t ′m−1/xm−1,uk+1/yk+1, . . . ,un/yn>
= t<t ′1/x1, . . . , t ′m/xm ,uk+1/yk+1, . . . ,un/yn>.

If x = y j (k +1 ≤ j ≤ n), say yn , then :
t<t1/x1, . . . , tm/xm>=λyn u<t1/x1, . . . , tm/xm>, since yn 6= x1, . . . , xm .
Therefore t<t1/x1, . . . , tm/xm><u1/y1, . . . ,un/yn>

=λyn u<t1/x1, . . . , tm/xm><u1/y1, . . . ,un−1/yn−1>.
By the induction hypothesis for u, we get :
u<t1/x1, . . . , tm/xm><u1/y1, . . . ,un−1/yn−1>

= u<t ′′1 /x1, . . . , t ′′m/xm ,uk+1/yk+1, . . . ,un−1/yn−1>,
with t ′′i = ti<u1/y1, . . . ,un−1/yn−1>.
But, since yn is bound in t , by hypothesis, it is not a free variable of ti . From
lemma 1.1, it follows that t ′′i = ti<u1/y1, . . . ,un/yn>= t ′i . Therefore :
t<t1/x1, . . . , tm/xm><u1/y1, . . . ,un/yn>

=λyn u<t ′1/x1, . . . , t ′m/xm ,uk+1/yk+1, . . . ,un−1/yn−1>
= t<t ′1/x1, . . . , t ′m/xm ,uk+1/yk+1, . . . ,un/yn>.

Q.E.D.

Corollary 1.3. Let t , t1, . . . , tm be λ-terms, and {x1, . . . , xm}, {y1, . . . , ym} two sets of
variables such that none of the yi ’s occur in t . Then :
t<y1/x1, . . . , ym/xm><t1/y1, . . . , tm/ym>= t<t1/x1, . . . , tm/xm>.

Suppose that x1, . . . , xk ∉ {y1, . . . , ym} and xk+1, . . . , xm ∈ {y1, . . . , ym}.
Then xk+1, . . . , xm are not free in t and therefore, by lemma 1.1, we have :
t<y1/x1, . . . , ym/xm>= t<y1/x1, . . . , yk /xk>.
The two sets {x1, . . . , xk } and {y1, . . . , ym} are disjoint, and the variables y1, . . . , ym

are not bound in t . Therefore, by lemma 1.2, we have :

Chapter 1. Substitution and beta-conversion 11

t<y1/x1, . . . , yk /xk><t1/y1, . . . , tm/ym>=
t<t1/x1, . . . , tk /xk , t1/y1, . . . , tm/ym>.

But y1, . . . , ym are not free in t , and therefore, by lemma 1.1 :
t<t1/x1, . . . , tk /xk , t1/y1, . . . , tm/ym>= t<t1/x1, . . . , tk /xk>.
Now xk+1, . . . , xm are not free in t ; thus, again by lemma 1.1 :
t<t1/x1, . . . , tk /xk>= t<t1/x1, . . . , tm/xm>.

Q.E.D.

Let R be a binary relation on L ; we will say that R isλ-compatible if it is reflexive
and satisfies :

t R t ′ ⇒λx t Rλx t ′ ; t R t ′, u R u′ ⇒ (t)u R (t ′)u′.
Remark. A binary relation R is λ-compatible if and only if :

x R x for each variable x ;

t R t ′ ⇒λx t Rλx t ′ ; t R t ′, u R u′ ⇒ (t)u R (t ′)u′ for all terms t ,u, t ′,u′.
Indeed, t R t is easily proved, by induction on the length of t .

Lemma 1.4. If R is λ-compatible and t1 R t ′1, . . . , tk R t ′k , then :
t<t1/x1, . . . , tk /xk>R t<t ′1/x1, . . . , t ′k /xk>.

Immediate proof by induction on the length of t .
Q.E.D.

Proposition 1.5. Let R be a binary relation on L. Then, the least λ-compatible
binary relation ρ containing R is defined by the following condition :
(1) tρ t ′ ⇔ there exists terms T, t1, . . . , tk , t ′1, . . . , t ′k and distinct variables x1, . . . , xk

such that ti R t ′i (1 ≤ i ≤ k) and t = T<t1/x1, . . . , tk /xk>, t ′ = T<t ′1/x1, . . . , t ′k /xk>.

Let ρ′ be the leastλ-compatible binary relation containing R, and ρ the relation
defined by condition (1) above. It follows from the previous lemma that ρ′ ⊃ ρ.
It is easy to see that ρ ⊃ R (take T = x1). It thus remains to prove that ρ is λ-
compatible.
By taking k = 0 in condition (1), we see that ρ is reflexive.
Suppose t = T<t1/x1, . . . , tk /xk>, t ′ = T<t ′1/x1, . . . , t ′k /xk>. Let y1, . . . , yk be dis-
tinct variables not occurring in T . Let V = T<y1/x1, . . . , yk /xk>. Then, it follows
from corollary 1.3 that t = V <t1/y1, . . . , tk /yk> and t ′ = V <t ′1/y1, . . . , t ′k /yk>.
Thus the distinct variables x1, . . . , xk in condition (1) can be arbitrarily chosen,
except in some finite set.
Now suppose tρt ′ and uρu′ ; then :

t = T<t1/x1, . . . , tk /xk>, t ′ = T<t ′1/x1, . . . , t ′k /xk> with ti Rt ′i ;
u =U<u1/y1, . . . ,ul /yl>, u′ =U<u′

1/y1, . . . ,u′
l /yl> with u j Ru′

j .
By the previous remark, we can assume that x1, . . . , xk , y1, . . . , yl are distinct, dif-
ferent from x, and also that none of the xi ’s occur in U , and none of the y j ’s
occur in T . Therefore :

12 Lambda-calculus, types and models

λx t = (λx T)<t1/x1, . . . , tk /xk>, λx t ′ = (λx T)<t ′1/x1, . . . , t ′k /xk>
which proves that λx t ρλx t ′.
Also, by lemma 1.1 :

t = T<t1/x1, . . . , tk /xk ,u1/y1, . . . ,ul /yl>,
t ′ = T<t ′1/x1, . . . , t ′k /xk , u′

1/y1, . . . ,u′
l /yl>

(since none of the y j ’s occur in T) ;
and similarly :

u =U<t1/x1, . . . , tk /xk ,u1/y1, . . . ,ul /yl>,
u′ =U<t ′1/x1, . . . , t ′k /xk ,u′

1/y1, . . . ,u′
l /yl>

(since none of the xi ’s occur in U).
Let V = (T)U ; then (t)u =V <t1/x1, . . . , tk /xk ,u1/y1, . . . ,ul /yl>,
(t ′)u′ =V <t ′1/x1, . . . , t ′k /xk ,u′

1/y1, . . . ,u′
l /yl> and thus (t)uρ (t ′)u′.

Q.E.D.

2. Alpha-equivalence and substitution

We will now define an equivalence relation on the set L of allλ-terms. It is called
α-equivalence, and denoted by ≡.
Intuitively, t ≡ t ′ means that t ′ is obtained from t by renaming the bound vari-
ables in t ; more precisely, t ≡ t ′ if and only if t and t ′ have the same sequence of
symbols (when all variables are considered equal), the same free occurrences
of the same variables, and if each λ binds the same occurrences of variables in
t and in t ′.
We define t ≡ t ′, on L, by induction on the length of t , by the following clauses :

if t is a variable, then t ≡ t ′ if and only if t = t ′ ;

if t = (u)v , then t ≡ t ′ if and only if t ′ = (u′)v ′, with u ≡ u′ and v ≡ v ′ ;

if t = λx u, then t ≡ t ′ if and only if t ′ = λx ′u′, with u<y/x> ≡
u′<y/x ′> for all variables y except a finite number.

(Note that u<y/x> has the same length as u, thus is shorter than t , which guar-
antees the correctness of the inductive definition).

Proposition 1.6. If t ≡ t ′, then t and t ′ have the same length and the same free
variables.

The proof is done by induction on the length of t . The cases when t is a variable,
or t = uv are trivial.
Suppose now that t =λx u and therefore t ′ =λx ′ u′. Thus, we have :
u<y/x>≡ u′<y/x ′> for every variable y except a finite number.

Chapter 1. Substitution and beta-conversion 13

We choose a variable y 6= x, x ′ which, moreover, does not appear (free or bound)
in u,u′. Let U (resp. U ′) be the set of free variables of u (resp. u′).
The set V of free variables of u<y/x> is U if x ∉ U and (U \ {x})∪ {y} if x ∈ U .
Also, the set V ′ of free variables of u′<y/x ′> is U ′ if x ′ ∉U ′ and (U ′ \ {x ′})∪ {y} if
x ′ ∈U ′. Now, we have V =V ′, by the induction hypothesis.
If x ∉U , we have y ∉V , thus y ∉V ′ and x ′ ∉U ′. Thus U =V =V ′ =U ′ and λx u,
λx ′ u′ have the same set of free variables, which is U .
If x ∈U , then y ∈V , thus y ∈V ′ and therefore x ′ ∈U ′.
The set of free variables of λx u (resp. λx ′ u′) is U \ {x} =V \ {y} (resp. U ′ \ {x ′} =
V ′ \ {y}). Since V =V ′, it is, once again, the same set.

Q.E.D.

The relation ≡ is an equivalence relation on L.

Indeed, the proof of the three following properties is trivial, by induction on t :
t ≡ t ; t ≡ t ′ ⇒ t ′ ≡ t ; t ≡ t ′, t ′ ≡ t ′′ ⇒ t ≡ t ′′.

Proposition 1.7. Let t , t ′, t1, t ′1 . . . , tk , t ′k be λ-terms, and x1, . . . , xk distinct vari-
ables. If t ≡ t ′, t1 ≡ t ′1, . . . , tk ≡ t ′k and if no free variable in t1, . . . , tk is bound in
t , t ′, then t<t1/x1, . . . , tk /xk>≡ t ′<t ′1/x1, . . . , t ′k /xk>.

Note that, since t ≡ t ′, t and t ′ have the same free variables. Thus it can be
assumed that x1, . . . , xk are free in t and t ′ ; indeed, if x1, . . . , xl are those xi vari-
ables which are free in t and t ′, then, by lemma 1.1 :
t<t1/x1, . . . , tk /xk>= t<t1/x1, . . . , tl /xl> and

t ′<t ′1/x1, . . . , t ′k /xk>= t ′<t ′1/x1, . . . , t ′l /xl>.
Also, since ti ≡ t ′i , ti and t ′i have the same free variables. Therefore, no free vari-
able in t1, t ′1, . . . , tk , t ′k is bound in t , t ′.
The proof of the proposition proceeds by induction on t . The result is im-
mediate if t is a variable, or t = (u)v . Suppose t = λx u. Then t ′ = λx ′u′ and
u<y/x>≡ u′<y/x ′> for all variables y except a finite number.
Since x1, . . . , xk are free in t and t ′, x and x ′ are different from x1, . . . , xk . Thus
t<t1/x1, . . . , tk /xk>=λx u<t1/x1, . . . , tk /xk> and

t ′<t ′1/x1, . . . , t ′k /xk>=λx ′u′<t ′1/x1, . . . , t ′k /xk>.
Hence it is sufficient to show that :

u<t1/x1, . . . , tk /xk><y/x>≡ u′<t ′1/x1, . . . , t ′k /xk><y/x ′>
for all variables y except a finite number.
Therefore, we may assume that y 6= x1, . . . , xk . Since x, x ′ are respectively bound
in t , t ′, they are not free in t1, . . . , tk , t ′1, . . . , t ′k ; thus, it follows from lemma 1.2
that

u<t1/x1, . . . , tk /xk><y/x>= u<t1/x1, . . . , tk /xk , y/x> and
u′<t ′1/x1, . . . , t ′k /xk><y/x ′>= u′<t ′1/x1, . . . , t ′k /xk , y/x ′>.

Since y 6= x1, . . . , xk , we get, applying again lemma 1.2 :

14 Lambda-calculus, types and models

u<y/x, t1/x1, . . . , tk /xk>= u<y/x><t1/x1, . . . , tk /xk> and
u′<y/x ′, t ′1/x1, . . . , t ′k /xk>= u′<y/x ′><t ′1/x1, . . . , t ′k /xk>

and therefore :
u<t1/x1, . . . , tk /xk><y/x>= u<y/x><t1/x1, . . . , tk /xk> and
u′<t ′1/x1, . . . , t ′k /xk><y/x ′>= u′<y/x ′><t ′1/x1, . . . , t ′k /xk>.

Now, since u<y/x> ≡ u′<y/x ′> for all variables y except a finite number, and
u<y/x> is shorter than t , the induction hypothesis gives :
u<y/x><t1/x1, . . . , tk /xk>≡ u′<y/x ′><t ′1/x1, . . . , t ′k /xk>, thus :
u<t1/x1, . . . , tk /xk><y/x> ≡ u′<t ′1/x1, . . . , t ′k /xk><y/x ′> for all variables y ex-
cept a finite number.

Q.E.D.

Corollary 1.8. The relation ≡ is λ-compatible.

Suppose t ≡ t ′. We need to prove that λx t ≡λx t ′, that is to say :
t<y/x> ≡ t ′<y/x> for all variables y except a finite number. But this follows
from proposition 1.7, provided that y is not a bound variable in t or in t ′.

Q.E.D.

Corollary 1.9. If t , t1, . . . , tk , t ′1, . . . , t ′k are terms, and x1, . . . , xk are distinct vari-
ables, then :

t1 ≡ t ′1, . . . , tk ≡ t ′k ⇒ t<t1/x1, . . . , tk /xk>≡ t<t ′1/x1, . . . , t ′k /xk>.

This follows from corollary 1.8 and lemma 1.4.
Q.E.D.

However, note that it is not true that u ≡ u′ ⇒ u<t/x>≡ u′<t/x>. For example,
λy x ≡λz x, while λy x<y/x>=λy y 6≡λz x<y/x>=λz y .

Lemma 1.10. λx t ≡ λy t<y/x> whenever y is a variable which does not occur
in t .

By corollary 1.3, t<z/x> = t<y/x><z/y> for any variable z, since y does not
occur in t . Hence the result follows from the definition of ≡.

Q.E.D.

Lemma 1.11. Let t be a term, and x1, . . . , xk be variables. Then there exists a term
t ′, t ′ ≡ t , such that none of x1, . . . , xk are bound in t ′.

The proof is by induction on t .
The result is immediate if t is a variable, or if t = (u)v .
If t =λx u, then, by induction hypothesis, there exists a term u′, u′ ≡ u, in which
none of x1, . . . , xk are bound. By the previous lemma, t ≡ λx u′ ≡ λy u′<y/x>
with y 6= x1, . . . , xk . Thus it is sufficient to take t ′ =λy u′<y/x>.

Q.E.D.

Chapter 1. Substitution and beta-conversion 15

From now on, α-equivalent terms will be identified ; hence we will deal with
the quotient set L/≡ ; it is denoted byΛ.
For each variable x, its equivalence class will still be denoted by x (it is actually
{x}). Furthermore, the operations t ,u 7→ (t)u and t , x 7→ λx t are compatible
with ≡ and are therefore defined inΛ.
Moreover, if t ≡ t ′, then t and t ′ have the same free variables. Hence it is possi-
ble to define the free variables of a member ofΛ.

Consider terms t , t1, . . . , tk ∈ Λ and distinct variables x1, . . . , xk . Then the term
t [t1/x1, . . . , tk /xk] ∈ Λ (being the result of the replacement of every free occur-
rence of xi in t by ti , for i = 1, . . . ,k) is defined as follows : let t , t 1, . . . , t k be
terms of L, the equivalence classes of which are respectively t , t1, . . . , tk . By
lemma 1.11, we may assume that no bound variable of t is free in t1, . . . , tk . Then
t [t1/x1, . . . , tk /xk] is defined as the equivalence class of t<t 1/x1, . . . , t k /xk>. In-
deed, by proposition 1.7, this equivalence class does not depend on the choice
of t , t 1, . . . , t k .
So the substitution operation t , t1, . . . , tk 7→ t [t1/x1, . . . , tk /xk] is well defined in
Λ. It corresponds to the replacement of the free occurrences of xi in t by ti

(1 ≤ i ≤ k), provided that a representative of t has been chosen such that no
free variable in t1, . . . , tk is bound in it.
The substitution operation satisfies the following lemmas, already stated for
the simple substitution :

Lemma 1.12. If the variable x1 is not free in the term t ofΛ, then :
t [t1/x1, . . . , tk /xk] = t [t2/x2, . . . , tk /xk].

Immediate from lemma 1.1 and the definition of t [t1/x1, . . . , tk /xk].
Q.E.D.

The following lemma shows that the substitution behaves much better in Λ

than in L (compare with lemma 1.2). In particular, it shows that the compo-
sition of two substitutions gives a substitution.

Lemma 1.13. Let {x1, . . . , xm}, {y1, . . . , yn} be two finite sets of variables, and sup-
pose that their common elements are x1 = y1, . . . , xk = yk .
Let t , t1, . . . , tm ,u1, . . . ,un be terms ofΛ. Then :
t [t1/x1, . . . , tm/xm][u1/y1, . . . ,un/yn] = t [t ′1/x1, . . . , t ′m/xm ,uk+1/yk+1, . . . ,un/yn]
where t ′i = ti [u1/y1, . . . ,un/yn].

Let t , t 1, . . . , t m ,u1, . . . ,un be some representatives of t , t1, . . . , tm ,u1, . . . ,un . By
lemma 1.11, we may assume that no bound variable of t is free in t1, . . . , tm ,
u1, . . . ,un , and that no bound variable of t 1, . . . , t m is free in u1, . . . ,un . From
lemma 1.2, we get :
t<t 1/x1, . . . , t m/xm><u1/y1, . . . ,un/yn>

16 Lambda-calculus, types and models

= t<t ′1/x1, . . . , t ′m/xm ,uk+1/yk+1, . . . ,un/yn>
where t ′i = t i<u1/y1, . . . ,un/yn>.
The first member is a representative of t [t1/x1, . . . , tm/xm][u1/y1, . . . ,un/yn], be-
cause t<t 1/x1, . . . , t m/xm> is a representative of t [t1/x1, . . . , tm/xm], and there
is no bound variable of this term which is free in u1, . . . ,un . The second member
is a representative of t [t ′1/x1, . . . , t ′m/xm ,uk+1/yk+1, . . . ,un/yn], since no bound
variable of t is free in t ′1, . . . , t ′m ,uk+1, . . . ,un .

Q.E.D.

Corollary 1.14. Any free variable of t [t1/x1, . . . , tm/xm] is free in t or in t1 or . . . or
in tm .

Let x be a variable which is not free in t , t1, . . . , tm . By lemma 1.13, we have
t [t1/x1, . . . , tm/xm][y/x] = t [t1/x1, . . . , tm/xm] for any variable y . This shows that
x is not free in t [t1/x1, . . . , tm/xm].

Q.E.D.

Lemma 1.15. Let x, x ′ be variables and u,u′ ∈Λ be such that λx u =λx ′ u′. Then
u[t/x] = u′[t/x ′] for every t ∈Λ.

Let u,u′ ∈ L be representatives of u,u′. Then λx u ≡ λx ′ u′ and, by definition of
theα-equivalence, we have u<y/x>≡ u′<y/x ′> for every variable y but a finite
number. If we suppose that y is not bound in u,u′, we see that u[y/x] = u′[y/x ′]
for every variable y but a finite number ; therefore u[y/x][t/y] = u′[y/x ′][t/y].
If we suppose that y is different from x, x ′, then, by lemma 1.13, we get :
u[t/x, t/y] = u′[t/x ′, t/y]. Assume now that y is not free in u,u′ ; then, by
lemma 1.12, we obtain u[t/x] = u′[t/x ′].

Q.E.D.

Proposition 1.16. Let t ∈Λ such that t =λx u. Then, for every variable x ′ which
is not free in t , there exists a unique u′ ∈ Λ such that t = λx ′ u′ ; it is given by
u′ = u[x ′/x].

Remark. Clearly, if x ′ is a free variable of t , we cannot have t =λx ′ u′.

If λx u =λx ′ u′, then u[x ′/x] = u′[x ′/x ′] = u′ by lemma 1.15.
We prove now that, if u′ = u[x ′/x], then λx u = λx ′ u′. We may assume that
x and x ′ are different, the result being trivial otherwise. Let u be a represen-
tative of u, in which the variable x ′ is not bound. Then u′ = u<x ′/x> is a
representative of u′. It is sufficient to show that λx u ≡ λx ′ u′, that is to say
u<y/x>≡ u′<y/x ′> for every variable y but a finite number.
Now u′<y/x ′>= u<x ′/x><y/x ′>. By corollary 1.3, we get :
u<x ′/x><y/x ′>= u<y/x> since the variable x ′ does not occur in u : indeed, it

Chapter 1. Substitution and beta-conversion 17

is not bound in u by hypothesis, and it is not free in u, because it is not free in
t =λx u.

Q.E.D.

We can now give the following inductive definition of the operation of substi-
tution [t1/x1, . . . , tk /xk], which is useful for inductive reasoning :

xi [t1/x1, . . . , tk /xk] = ti for 1 ≤ i ≤ k ;

if x is a variable different from x1, . . . , xk , then
x[t1/x1, . . . , tk /xk] = x ;

if t = uv , then t [t1/x1, . . . , tk /xk]
= (u[t1/x1, . . . , tk /xk])v[t1/x1, . . . , tk /xk] ;

if t =λx u, we may assume that x is not free in t1, . . . , tk and different
from x1, . . . , xk (proposition 1.16). Then

t [t1/x1, . . . , tk /xk] =λx(u[t1/x1, . . . , tk /xk]).

We need only to prove the last case :
let u, t 1, . . . , t k be representatives of u, t1, . . . , tk , such that no free variable of
t1, . . . , tk is bound in u.
Then t =λx u is a representative of t ; and τ= t<t 1/x1, . . . , t k /xk> is a represen-
tative of t [t1/x1, . . . , tk /xk], since the bound variables of t are x and the bound
variables of u, and x is not free in t1, . . . , tk . Now τ = λx u<t 1/x1, . . . , t k /xk>
since x 6= x1, . . . , xk . The result follows, because u<t 1/x1, . . . , t k /xk> is a repre-
sentative of u[t1/x1, . . . , tk /xk].

We now define the notion of λ-compatibility on Λ : if R is a binary relation on
Λ, we will say that R is λ-compatible if it satisfies :

x R x for each variable x ;
t R t ′ ⇒λx t Rλx t ′ ;
t R t ′,u R u′ ⇒ (t)u R (t ′)u′.

A λ-compatible relation is necessarily reflexive. Indeed, we have :

Lemma 1.17. If R is λ-compatible and t1R t ′1, . . . , tk R t ′k , then :
t [t1/x1, . . . , tk /xk]R t [t ′1/x1, . . . , t ′k /xk].

Immediate proof by induction on the length of t .
Q.E.D.

3. Beta-conversion

Let R be a binary relation, on an arbitrary set E ; the least transitive and reflexive
binary relation which contains R is obviously the relation R ′ defined as follows :

18 Lambda-calculus, types and models

t R ′u ⇔ there exist a finite sequence t = v0, v1, . . . , vn−1, vn = u of elements of E
such that vi R vi+1 (0 ≤ i < n).
R ′ is called the transitive closure of R.

We say that the binary relation R on E satisfies the Church-Rosser (C.-R.) prop-
erty if and only if :
for every t ,u,u′ ∈ E such that t R u and t R u′, there exists some v ∈ E such that
u R v and u′R v .

Lemma 1.18. Let R be a binary relation which satisfies the Church-Rosser prop-
erty. Then the transitive closure of R also satisfies it.

Let R ′ be that transitive closure. We will first prove the following property :
t R ′u, t R u′ ⇒ for some v , u R v and u′R ′v .
t R ′u means that there exists a sequence t = v0, v1, . . . , vn−1, vn = u such that
vi R vi+1 (0 ≤ i < n).
The proof is by induction on n ; the case n = 1 is just the hypothesis of the
lemma.
Now since t R ′vn−1 and t R u′, for some w , vn−1R w and u′R ′w . But vn−1R u, so
u R v and w R v for some v (C.-R. property for R). Therefore u′R ′v , which gives
the result.
Now we can prove the lemma : the assumption is t R ′u and t R ′u′, so there exists
a sequence : t = v0, v1, . . . , vn−1, vn = u′ such that vi R vi+1 (0 ≤ i < n).
The proof is by induction on n : the case n = 1 has just been settled.
Since t R ′u and t R ′vn−1, by induction hypothesis, we have u R ′w and vn−1R ′w
for some w . Now vn−1R u′, so, by the previous property, w R v and u′R ′v for
some v . Thus u R ′v .

Q.E.D.

In the following, we consider binary relations on the setΛ of λ-terms.

Proposition 1.19.
If t ,u, t ′,u′ ∈Λ and (λx u)t = (λx ′u′)t ′, then u[t/x] = u′[t ′/x ′].

This is the same as lemma 1.15, since (λx u)t = (λx ′u′)t ′ if and only if t = t ′ and
λx u =λx ′u′.

Q.E.D.

A term of the form (λx u)t is called a redex, u[t/x] is called its contractum.
Proposition 1.19 shows that this notion is correctly defined onΛ.
A binary relation β0 will now be defined onΛ ; t β0 t ′ should be read as :
“ t ′ is obtained by contracting a redex (or by a β-reduction) in t ”.
The definition is by induction on t :

if t is a variable, then there is no t ′ such that t β0 t ′ ;
if t = (u)v , then t β0 t ′ if and only if

Chapter 1. Substitution and beta-conversion 19

either t ′ = (u)v ′ with v β0 v ′,
or t ′ = (u′)v with uβ0 u′,
or else u =λx w and t ′ = w[v/x] ;

if t =λx u, then t β0 t ′ if and only if t ′ =λx u′, with uβ0 u′.
We must check that, in this last case, the definition of β0 does not depend on
the choice of the bound variable x. We show this by induction on the length of
t , simultaneously with the following proposition 1.20.

We first remark, from the definition of β0 and corollary 1.14, that whenever
t β0 t ′, any free variable in t ′ is also free in t .

Proposition 1.20. If t β0 t ′ then t [t1/x1, . . . , tk /xk]β0 t ′[t1/x1, . . . , tk /xk].

For the sake of brevity, we use the notation t̂ for t [t1/x1, . . . , tk /xk]. It follows
from the definition of β0 that the different possibilities for t , t ′ are :
i) t = (u)v and t ′ = (u)v ′, with v β0 v ′. Then, by induction hypothesis, we get
v̂ β0 v̂ ′ ; hence the result, by definition of β0.
ii) t = (u)v and t ′ = (u′)v , with uβ0 u′. Same proof.
iii) t = (λx u)v and t ′ = u[v/x]. By proposition 1.16, we may assume that x is
not free in t1, . . . , tk and different from x1, . . . , xk .
Then t̂ ′ = u[v/x][t1/x1, . . . , tk /xk] = u[v̂/x, t1/x1, . . . , tk /xk] (by lemma 1.13) =
u[t1/x1, . . . , tk /xk][v̂/x] (by lemma 1.13 and the choice of x) = û[v̂/x].
Now t̂ = (λx û)v̂ , and therefore t̂ β0 t̂ ′.
iv) t = λx u, t ′ = λx u′, and uβ0 u′. Let us check first that the definition of β0 in
this case does not depend on the choice of the bound variable x. Let y be a vari-
able which is not free in t (and thus also not free in t ′). By the induction hypoth-
esis, we have u[y/x]β0 u′[y/x], and therefore λy u[y/x]β0λy u′[y/x] which is
the desired result.
Again, we may assume that x is not free in t1, . . . , tk and different from x1, . . . , xk .
Then, by induction hypothesis, we get ûβ0 û′, and therefore λx ûβ0λx û′.
Finally, by the choice of x, this is the same as :
(λx u)[t1/x1, . . . , tk /xk]β0 (λx u′)[t1/x1, . . . , tk /xk].

Q.E.D.

The β-conversion is the least binary relation β on Λ, which is reflexive, transi-
tive, and contains β0. Thus, we have :
t β t ′ ⇔ there exists a sequence t = t0, t1, . . . , tn−1, tn = t ′ such that tiβ0 ti+1 for
0 ≤ i ≤ n −1 (n ≥ 0).

Therefore, whenever t β t ′, any free variable in t ′ is also free in t .
The next two propositions give two simple characterizations of β.

Proposition 1.21. The β-conversion is the least transitive λ-compatible binary
relation β such that (λx u)t βu[t/x] for all terms t ,u and variable x.

20 Lambda-calculus, types and models

Clearly, t β0 t ′,uβ0 u′ ⇒ λx t β0λx t ′ and (u)t β (u′)t ′. Hence β is λ-compatible.
Conversely, if R is a λ-compatible binary relation and if (λx u)t R u[t/x] for all
terms t ,u, then it follows immediately from the definition of β0 that R ⊃ β0

(prove t β0 t ′ ⇒ t R t ′ by induction on t). So, if R is transitive, then R ⊃β.
Q.E.D.

Proposition 1.22. β is the transitive closure of the binary relation ρ defined onΛ
by : uρu′ ⇔ there exist a term v and redexes t1, . . . , tk with contractums t ′1, . . . , t ′k
such that u = v[t1/x1, . . . , tk /xk],u′ = v[t ′1/x1, . . . , t ′k /xk].

Since β is λ-compatible, it follows from lemma 1.17 that β ⊃ ρ, and therefore
β contains the transitive closure of ρ. Conversely, the transitive closure of ρ
clearly contains β0, and therefore contains β.

Q.E.D.

Proposition 1.23. If t β t ′, t1β t ′1, . . . , tk β t ′k then :
t [t1/x1, . . . , tk /xk]β t ′[t ′1/x1, . . . , t ′k /xk].

Since β is λ-compatible, we have, by lemma 1.17 :
t [t1/x1, . . . , tk /xk]β t [t ′1/x1, . . . , t ′k /xk].

Then, we get t [t ′1/x1, . . . , t ′k /xk]β t ′[t ′1/x1, . . . , t ′k /xk] by proposition 1.20.
Q.E.D.

A term t is said to be normal, or to be in normal form, if it contains no redex.
So the normal terms are those which are obtained by applying, a finite number
of times, the following rules :

any variable x is a normal term ;
whenever t is normal, so is λx t ;
if t ,u are normal and if the first symbol in t is not λ, then (t)u is normal.

This definition yields, immediately, the following properties :
A term is normal if and only if it is of the form λx1 . . .λxk (x)t1 . . . tn (with k,n ≥
0), where x is a variable and t1, . . . , tn are normal terms.
A term t is normal if and only if there is no term t ′ such that t β0 t ′.
Thus a normal term is “ minimal ” with respect to β, which means that, when-
ever t is normal, t β t ′ ⇒ t = t ′. However the converse is not true :
take t = (λx(x)x)λx(x)x, then t β t ′ ⇒ t = t ′ although t is not normal.

A term t is said to be normalizable if t β t ′ for some normal term t ′.
A term t is said to be strongly normalizable if there is no infinite sequence
t = t0, t1, . . . , tn , . . . such that ti β0 ti+1 for all i ≥ 0 (the term t is then obviously
normalizable).
For instance, λx x is a normal term, (λx(x)x)λx x is strongly normalizable,
(λx y)ω is normalizable but not strongly, and ω = (λx(x)x)λx(x)x is not nor-
malizable at all.

Chapter 1. Substitution and beta-conversion 21

For normalizable terms, the problem of the uniqueness of the normal form
arises. It is solved by the following theorem :

Theorem 1.24 (Church-Rosser).
The β-conversion satisfies the property of Church-Rosser.

This yields the uniqueness of the normal form : if t β t1, t β t2, with t1, t2 normal,
then, according to the theorem, there exists a term t3 such that t1β t3, t2β t3.
Thus t1 = t3 = t2.

In order to prove that β satisfies the Church-Rosser property, it is sufficient to
exhibit a binary relation ρ onΛwhich satisfies the Church-Rosser property and
has the β-conversion as its transitive closure.
One could think of taking ρ to be the “ reflexive closure ” of β0, which would
be defined by xρ y ⇔ x = y or xβ0 y . But this relation ρ does not satisfy the
Church-Rosser property : for example, if t = (λx(x)x)r , where r is a redex with
contractum r ′, u = (r)r and v = (λx(x)x)r ′, then t β0 u and t β0 v , while there is
no term w such that uβ0 w and v β0 w .

A suitable definition of ρ is as the least λ-compatible binary relation onΛ such
that t ρ t ′,uρu′ ⇒ (λx u)t ρu′[t ′/x].

To prove that β ⊃ ρ, it is enough to see that t β t ′,uβu′ ⇒ (λx u)t βu′[t ′/x] ;
now : (λx u)t β (λx u′)t ′ (since β is λ-compatible) and (λx u′)t ′βu′[t ′/x] ; then
the expected result follows, by transitivity.
Therefore, β contains the transitive closure ρ′ of ρ. But of course ρ ⊃ β0, so
ρ′ ⊃β.
Hence β is the transitive closure of ρ. It thus remains to prove that ρ satisfies
the Church-Rosser property.

By definition, ρ is the set of all pairs of terms obtained by applying, a finite
number of times, the following rules :
1. xρ x for each variable x ;
2. t ρ t ′ ⇒λx t ρλx t ′ ;
3. t ρ t ′ and uρu′ ⇒ (t)uρ (t ′)u′ ;
4. t ρ t ′ and uρu′ ⇒ (λx t)uρ t ′[u′/x].

Lemma 1.25.
i) If xρ t ′, where x is a variable, then t ′ = x.
ii) If λx uρ t ′, then t ′ =λx u′, and uρu′.
iii) If (u)v ρ t ′, then either t ′ = (u′)v ′ with uρu′ and v ρ v ′

or u =λx w and t ′ = w ′[v ′/x] with v ρ v ′ and w ρw ′.

i) xρ t ′ could only be obtained by applying rule 1, hence t ′ = x.
ii) Consider the last rule applied to obtain λx uρ t ′ ; the form of the term on the
left shows that it is necessarily rule 2 ; the result then follows.

22 Lambda-calculus, types and models

iii) Same method : the last rule applied to obtain (u)v ρ t ′ is 3 or 4 ; this yields
the conclusion.

Q.E.D.

Lemma 1.26. Whenever t ρ t ′ and uρu′, then t [u/x]ρ t ′[u′/x].

The proof proceeds by induction on the length of the derivation of t ρ t ′ by
means of rules 1, 2, 3, 4 ; consider the last rule used :

If it is rule 1, then t = t ′ is a variable, and the result is trivial.
If it is rule 2, then t = λy v, t ′ = λy v ′ and v ρ v ′. By proposition 1.16, we

may assume that y is different from x and is not free in u,u′. Since uρu′, the
induction hypothesis implies v[u/x]ρ v ′[u′/x] ; hence λy v[u/x]ρλy v ′[u′/x]
(rule 2), that is to say t [u/x]ρ t ′[u′/x].

If it is rule 3, then t = (v)w and t ′ = (v ′)w ′, with v ρ v ′ and w ρw ′.
Thus, by induction hypothesis, v[u/x]ρ v ′[u′/x] and w[u/x]ρw ′[u′/x].
Therefore, by applying rule 3, we obtain (v[u/x])w[u/x]ρ (v ′[u′/x])w ′[u′/x]
that is t [u/x]ρ t ′[u′/x].

If it is rule 4, then t = (λy v)w and t ′ = v ′[w ′/y], with v ρ v ′ and w ρw ′. We
assume that y is not free in u,u′, and is different from x. By induction hypoth-
esis, we have v[u/x]ρ v ′[u′/x] and w[u/x]ρw ′[u′/x]. By rule 4, we get :

(?) (λy v[u/x])w[u/x]ρ v ′[u′/x][w ′[u′/x]/y].

Now λy v[u/x] = (λy v)[u/x], by hypothesis on y . It follows that :
t [u/x] = (λy v[u/x])w[u/x].

On the other hand, we have t ′[u′/x] = v ′[w ′/y][u′/x] = v ′[w ′[u′/x]/y,u′/x] (by
lemma 1.13) = v ′[u′/x][w ′[u′/x]/y] (again by lemma 1.13, since the variable y
is not free in u′).
Then, (?) gives the wanted result : t [u/x]ρ t ′[u′/x].

Q.E.D.

Now the proof of the Church-Rosser property for ρ can be completed. So we
assume that t0ρ t1, t0ρ t2, and we look for a term t3 such that t1ρ t3, t2ρ t3. The
proof is by induction on the length of t0.

If t0 is a variable, then by lemma 1.25(i), t0 = t1 = t2 ; take t3 = t0.
If t0 =λx u0, then, since t0ρ t1, t0ρ t2, by lemma 1.25(ii), we have :

t1 = λx u1, t2 = λx u2 and u0ρu1,u0ρu2. By induction hypothesis, u1ρu3 and
u2ρu3 hold for some term u3. Hence it is sufficient to take t3 =λx u3.

If t0 = (u0)v0, then, since t0ρ t1, t0ρ t2, by lemma 1.25(iii), the different pos-
sible cases are :

a) t1 = (u1)v1, t2 = (u2)v2 with u0ρu1, v0ρ v1,u0ρu2, v0ρ v2. By induction
hypothesis, u1ρu3,u2ρu3, v1ρ v3, v2ρ v3 hold for some u3 and v3. Hence it is
sufficient to take t3 = (u3)v3.

Chapter 1. Substitution and beta-conversion 23

b) t1 = (u1)v1, with u0ρu1, v0ρ v1 ; u0 =λx w0 ;
t2 = w2[v2/x], with v0ρ v2, w0ρw2.

Since u0ρu1, by lemma 1.25(ii), we have u1 = λx w1, for some w1 such that
w0ρw1. Thus t1 = (λx w1)v1.
Since v0ρ v1, v0ρ v2, and w0ρw1, w0ρw2, the induction hypothesis gives :
v1ρ v3, v2ρ v3, and w1ρw3, w2ρw3 for some v3 and w3. Hence, by rule 4, we
get (λx w1)v1ρw3[v3/x], that is t1ρw3[v3/x].
Now, by lemma 1.26, we get w2[v2/x]ρw3[v3/x].
Therefore we obtain the expected result by taking t3 = w3[v3/x].

c) u0 =λx w0, t1 = w1[v1/x], t2 = w2[v2/x] and we have :
v0ρ v1, v0ρ v2, w0ρw1, w0ρw2.
By induction hypothesis, v1ρ v3, v2ρ v3, w1ρw3, w2ρw3 hold for some v3 and
w3. Hence, by lemma 1.26, w1[v1/x]ρw3[v3/x], w2[v2/x]ρw3[v3/x], that is to
say t1ρw3[v3/x], t2ρw3[v3/x]. The result follows by taking t3 = w3[v3/x].

Q.E.D.

Remark. The intuitive meaning of the relation ρ is the following : t ρ t ′ holds if and
only if t ′ is obtained from t by contracting several redexes occurring in t . For example,
(λx(x)x)λx xρ(λx x)λx x ; a new redex has been created, but it cannot be contracted ;
(λx(x)x)λx xρλx x does not hold.

In other words, t ρ t ′ means that t and t ′ are constructed simultaneously : for t the

steps of the construction are those described in the definition of terms, while for t ′,
the same rules are applied, except that the following alternative is allowed : whenever

t = (λx u)v , t ′ can be taken either as (λx u′)v ′ or as u′[v ′/x]. This is what lemma 1.25

expresses.

β-equivalence

The β-equivalence (denoted by 'β) is defined as the least equivalence relation
which contains β0 (or β, which comes to the same thing). In other words :
t 'β t ′ ⇔ there exists a sequence (t = t1), t2, . . . , tn−1, (tn = t ′), such that ti β0 ti+1

or ti+1β0 ti for 1 ≤ i < n.
t 'β t ′ should be read as : t is β-equivalent to t ′.

Proposition 1.27.
t 'β t ′ if and only if there exists a term u such that t βu and t ′βu.

The condition is obviously sufficient. For the purpose of proving that it is nec-
essary, consider the relation ' defined by : t ' t ′ ⇔ t βu and t ′βu for some
term u.
This relation contains β, and is reflexive and symmetric. It is also transitive,
for if t ' t ′, t ′ ' t ′′, then t βu, t ′βu, and t ′βv , t ′′βv for suitable u and v . By

24 Lambda-calculus, types and models

theorem 1.24 (Church-Rosser’s theorem), uβw and v βw hold for some term
w ; thus t βw , t ′′βw .
Hence ' is an equivalence relation which contains β, so it also contains 'β.

Q.E.D.

Therefore, a non-normalizable term cannot be β-equivalent to a normal term.

4. Eta-conversion

Proposition 1.28. If λx(t)x =λx ′(t ′)x ′ and x is not free in t , then t = t ′.

By proposition 1.16, we get t ′x ′ = (t x)[x ′/x] which is t x ′ since x is not free in t .
Therefore t = t ′.

Q.E.D.

A term of the form λx(t)x, where x is not free in t , is called an η-redex, its con-
tractum being t .
A term of either of the forms (λx t)u, λy(v)y (where y is not free in v) will be
called a βη-redex.

We now define a binary relation η0 onΛ ; t η0 t ′ should be read as “ t ′ is obtained
by contracting an η-redex (or by an η-reduction) in the term t ”. The definition
is given by induction on t , as for β0 :

if t is a variable, then there is no t ′ such that t η0 t ′ ;
if t =λx u, then t η0 t ′ if and only if :

either t ′ =λx u′, with uη0 u′, or u = (t ′)x, with x not free in t ′ ;
if t = (u)v , then t η0, t ′ if and only if :

either t ′ = (u′)v with uη0 u′ or t ′ = (u)v ′ with v η0 v ′.
The relation t βη0 t ′ (which means : “ t ′ is obtained from t by contracting a βη-
redex ”) is defined as : t β0 t ′ or t η0 t ′.
The η-conversion (resp. the βη-conversion) is defined as the least binary rela-
tion η (resp. βη) onΛwhich is reflexive, transitive, and contains η0 (resp. βη0).

Proposition 1.29. The βη-conversion is the least transitive λ-compatible binary
relation βη such that (λx t)uβη t [u/x] and λy(v)y βηv whenever y is not free in
v.

The proof is similar to that of proposition 1.21 (which is the analogue for β).
Q.E.D.

It can be proved, as for β, that βη is the transitive closure of the binary relation
ρ defined on Λ by : uρu′ ⇔ there exist a term v , and redexes t1, . . . , tk with
contractums t ′1, . . . , t ′k such that u = v[t1/x1, . . . , tk /xk], u′ = v[t ′1 /x1, . . . , t ′k /xk].

Similarly : if t βη t ′, then every free variable in t ′ is also free in t .

Chapter 1. Substitution and beta-conversion 25

Proposition 1.30. If t βη0 t ′ then t [t1/x1, . . . , tk /xk]βη0 t ′[t1/x1, . . . , tk /xk].

The proof is by induction on the length of t . For the sake of brevity, we use the
notation t̂ for t [t1/x1, . . . , tk /xk]. It follows from the definition of βη0 that the
different possibilities for t , t ′ are :

i) t =λx u, t ′ =λx u′, and uβη0u′.
ii) t = (u)v and t ′ = (u′)v , with uβη0u′.
iii) t = (u)v and t ′ = (u)v ′, with v βη0 v ′.
iv) t = (λx u)v and t ′ = u[v/x].
v) t =λx(t ′)x, with x not free in t ′.

Cases i) to iv) are settled exactly as in proposition 1.20. In case v), assume that x
is not free in t1, . . . , tk and different from x1, . . . , xk . Then t̂ =λx(t̂ ′)x, and there-
fore t̂ βη0 t̂ ′.

Q.E.D.

Proposition 1.31. If t βη t ′, t1βη t ′1, . . . , tk βη t ′k then
t [t1/x1, . . . , tk /xk]βη t ′[t ′1/x1, . . . , t ′k /xk].

Since βη is λ-compatible, we have t [t1/x1, . . . , tk /xk]βη t [t ′1/x1, . . . , t ′k /xk], by
lemma 1.17. Then, we get t [t ′1/x1, . . . , t ′k /xk]βη t ′[t ′1/x1, . . . , t ′k /xk] by proposi-
tion 1.30.

Q.E.D.

A term t is said to be βη-normal if it contains no βη-redex.
So the βη-normal terms are those obtained by applying, a finite number of
times, the following rules :

any variable x is a βη-normal term ;
whenever t is βη-normal, then so is λx t , except if t = (t ′)x, with x not free

in t ′ ;
whenever t ,u are βη-normal, then so is (t)u, except if the first symbol in t

is λ.

Theorem 1.32. The βη-conversion satisfies the Church-Rosser property.

The proof is on the same lines as for the β-conversion. Here ρ is defined as the
least λ-compatible binary relation onΛ such that :
t ρ t ′, uρu′ ⇒ (λx t)uρ t ′[u′/x] ;
t ρ t ′ ⇒λx(t)xρ t ′ whenever x is not free in t .
The first thing to be proved is : βη⊃ ρ.
For that purpose, note that t βη t ′, uβηu′ ⇒ (λx t)uβη t ′[u′/x] ;
indeed, since βη is λ-compatible, we have (λx t)uβη (λx t ′)u′ and, on the other
hand, (λx t ′)u′βη t ′[u′/x] ; the result then follows, by transitivity.
Now we show that t βη t ′ ⇒ λx(t)xβη t ′ if x is not free in t ; this is immediate,
by transitivity, since λx(t)xβη t .

26 Lambda-calculus, types and models

Therefore βη is the transitive closure of ρ. It thus remains to prove that ρ satis-
fies the Church-Rosser property.
By definition, ρ is the set of all pairs of terms obtained by applying, a finite
number of times, the following rules :
1. xρ x for each variable x ;
2. t ρ t ′ ⇒λx t ρλx t ′ ;
3. t ρ t ′ and uρu′ ⇒ (t)uρ (t ′)u′ ;
4. t ρ t ′, uρu′ ⇒ (λx t)uρ t ′[u′/x] ;
5. t ρ t ′ ⇒λx(t)xρ t ′ whenever x is not free in t .

The following lemmas are the analogues of lemmas 1.25 and 1.26.

Lemma 1.33. i) If xρ t ′, where x is a variable, then t ′ = x.
ii) If λx uρ t ′, then either t ′ = λx u′ and uρu′, or u = (t)x and t ρ t ′, with x

not free in t .
iii) If (u)v ρ t ′, then either t ′ = (u′)v ′ with uρu′ and v ρ v ′, or u = λx w and

t ′ = w ′[v ′/x] with v ρ v ′ and w ρw ′.

Same proof as for lemma 1.25.
Q.E.D.

Lemma 1.34. Whenever t ρ t ′ and uρu′, then t [u/x]ρ t ′[u′/x].

The proof proceeds by induction on the length of the derivation of t ρ t ′ by
means of rules 1 through 5 ; consider the last rule used :

if it is one of rules 1, 2, 3, 4, then the proof is the same as in lemma 1.26 ;
if it is rule 5, then t = λy(v)y and v ρ t ′, with y not free in v . We may

assume that y is not free in u and different from x. By induction hypothe-
sis, v[u/x]ρ t ′[u′/x], then, by applying rule 5, we obtain λy(v[u/x])y ρ t ′[u′/x]
(since y is not free in v[u/x]), that is t [u/x]ρ t ′[u′/x].

Q.E.D.

Now the proof of the Church-Rosser property for ρ can be completed. So we
assume that t0ρ t1, t0ρ t2, and we look for a term t3 such that t1ρ t3, t2ρ t3. The
proof is by induction on the length of t0.

If t0 has length 1, then it is a variable ; hence, by lemma 1.33, t0 = t1 = t2 ;
take t3 = t0.

If t0 = λx u0, then, since t0ρ t1, t0ρ t2, by lemma 1.33, the different possible
cases are :

a) t1 = λx u1, t2 = λx u2, and u0ρu1, u0ρu2. By induction hypothesis,
u1ρu3 and u2ρu3 hold for some term u3. Then it is sufficient to take t3 =λx u3.

b) t1 =λx u1, and u0ρu1 ; u0 = (t ′0)x, with x not free in t ′0, and t ′0ρ t2.
According to lemma 1.33, since u0ρu1 and u0 = (t ′0)x, there are two possibilities
for u1 :

Chapter 1. Substitution and beta-conversion 27

i) u1 = (t ′1)x, with t ′0ρ t ′1. Now t ′0ρ t2, thus, by induction hypothesis, t ′1ρ t3

and t2ρ t3 hold for some term t3. Note that, since t ′0ρ t ′1, all free variables in t ′1
are also free in t ′0, so x is not free in t ′1. Hence, by rule 5, λx(t ′1)xρ t3, that is
t1ρ t3.

ii) t ′0 = λy u′
0, u1 = u′

1[x/y] and u′
0ρu′

1. By proposition 1.16, we may
choose for y any variable which is not free in t ′0, x for example. Then u1 = u′

1
and u′

0ρu1. Since ρ is λ-compatible, λx u′
0ρλx u1, that is t ′0ρ t1. Since t ′0ρ t2,

there exists, by induction hypothesis, a term t3 such that t1ρ t3, t2ρ t3.
c) u0 = (t ′0)x, with x not free in t ′0, and t ′0ρ t1, t ′0ρ t2. The conclusion follows

immediately from the induction hypothesis, since t ′0 is shorter than t0.

If t0 = (v0)u0, then, since t0ρ t1, t0ρ t2, by lemma 1.33, the different possible
cases are :

a) t1 = (v1)u1, t2 = (v2)u2 with u0ρu1, v0ρ v1, u0ρu2, v0ρ v2. By induction
hypothesis, u1ρu3, u2ρu3, v1ρ v3, v2ρ v3 hold for some u3 and v3. Then it is
sufficient to take t3 = (v3)u3.

b) t1 = (v1)u1, with u0ρu1, v0ρ v1 ; v0 ≡λx w0, t2 = w2[u2/x], with u0ρu2,
w0ρw2. Since v0ρ v1, and v0 = λx w0, by lemma 1.33, the different possible
cases are :

i) v1 = λx w1, with w0ρw1. Then t1 = (λx w1)u1. Since u0ρu1, u0ρu2,
and w0ρw1, w0ρw2, by induction hypothesis, u1ρu3, u2ρu3, and w1ρw3,
w2ρw3 hold for some u3, w3. Thus, by rule 4, (λx w1)u1ρw3[u3/x], that is
t1ρw3[u3/x]. Hence, by lemma 1.34, w2[u2/x]ρw3[u3/x]. The expected result
is then obtained by taking t3 = w3[u3/x].

ii) w0 = (v ′
0)x, with x not free in v ′

0, and v ′
0ρ v1. Then (v ′

0)xρw2 ; since
u0ρu2, it follows from lemma 1.34 that ((v ′

0)x)[u0/x]ρw2[u2/x]. But x is not
free in v ′

0, so this is equivalent to (v ′
0)u0ρ t2.

Now v ′
0ρ v1 and u0ρu1. Thus (v ′

0)u0ρ (v1)u1, in other words : (v ′
0)u0ρ t1. Since

(v ′
0)u0 is shorter than t0 (because v0 = λx(v ′

0)x), there exists, by induction hy-
pothesis, a term t3 such that t1ρ t3, t2ρ t3.

c) v0 = λx w0, t1 = w1[u1/x], t2 = w2[u2/x], with u0ρu1, u0ρu2, w0ρw1

and w0ρw2. By induction hypothesis, u1ρu3, u2ρu3, w1ρw3, w2ρw3 hold
for some u3 and w3.
Thus, by lemma 1.34, we have w1[u1/x]ρw3[u3/x], w2[u2/x]ρw3[u3/x], that
is to say t1ρw3[u3/x], t2ρw3[u3/x]. The result follows by taking t3 = w3[u3/x].

Q.E.D.

The βη-equivalence (denoted by 'βη) is defined as the least equivalence rela-
tion which contains βη. In other words :
t 'βη t ′ ⇔ there exists a sequence t = t1, t2, . . . , tn−1, tn = t ′, such that either
ti βη ti+1 or ti+1βη ti , for 1 ≤ i < n.
As for the β-equivalence, it follows from Church-Rosser’s theorem that :

28 Lambda-calculus, types and models

Proposition 1.35. t 'βη t ′ ⇔ t βηu and t ′βηu for some term u.

The relation 'βη satisfies the “ extensionality axiom ”, that is to say :

If (t)u 'βη (t ′)u holds for all u, then t 'βη t ′.
Indeed, it is enough to take u as a variable x which does not occur in t , t ′. Since
'βη is λ-compatible, we have λx(t)x 'βη λx(t ′)x ; therefore, by η-reduction,
t 'βη t ′.

References for chapter 1

[Bar84], [Chu41], [Hin86].
(The references are in the bibliography at the end of the book).

Chapter 2

Representation of recursive
functions

1. Head normal forms

In every λ-term, each subsequence of the form “ (λ ” corresponds to a unique
redex (this is obvious since redexes are terms of the form (λx t)u). This allows
us to define, in any non normal term t , the leftmost redex in t . Let t ′ be the term
obtained from t by contracting that leftmost redex : we say that t ′ is obtained
from t by a leftmost β-reduction.
Let t be an arbitrary λ-term. With t we associate a (finite or infinite) sequence
of terms t0, t1, . . . , tn , . . . such that t0 = t , and tn+1 is obtained from tn by a left-
most β-reduction (if tn is normal, then the sequence ends with tn). We call it
“ the sequence obtained from t by leftmost β-reduction ” ; it is uniquely deter-
mined by t .
The following theorem will be proved in chapter 4 (theorem 4.13) :

Theorem 2.1. If t is a normalizable term, then the sequence obtained from t by
leftmost β-reduction terminates with the normal form of t .

We see that this theorem provides a “ normalizing strategy ”, which can be used
for any normalizable term.

The next proposition is simply a remark about the form of the λ-terms :

Proposition 2.2. Every term of theλ-calculus can be written, in a unique way, in
the form λx1 . . .λxm(v)t1 . . . tn , where x1, . . . , xm are variables, v is either a vari-
able or a redex (v = (λx t)u) and t1, . . . , tn are terms (m,n ≥ 0).

Recall that (v)t1 . . . tn denotes the term (. . . ((v)t1) . . .)tn .

29

30 Lambda-calculus, types and models

We prove the proposition by induction on the length of the considered term τ :
the result is clear if τ is a variable.
If τ = λx τ′, then τ′ is determined by τ, and can be written in a unique way in
the indicated form, by induction hypothesis ; thus the same holds for τ.
If τ = (w)v , then v and w are determined by τ. If w starts with λ, then τ is a
redex, so it is of the second form, and not of the first one. If w does not start
with λ, then, by induction hypothesis, w = (w ′)t1 . . . tn , where w ′ is a variable
or a redex ; thus τ= (w ′)t1 . . . tn v , which is in one and only one of the indicated
forms.

Q.E.D.

Definitions. A term τ is a head normal form (or in head normal form) if it is of
the first form indicated in proposition 2.2, namely if :

τ=λx1 . . .λxm(x)t1 . . . tn ,
where x is a variable.
In the second case, if τ = λx1 . . .λxm(λx u)t t1 . . . tn , then the redex (λx u)t is
called the head redex of τ.
The head redex of a term τ, when it exists (namely when τ is not a head normal
form), is clearly the leftmost redex in τ.

It follows from proposition 2.2 that a term t is normal if and only if it is a head
normal form : τ = λx1 . . .λxm(x)t1 . . . tn , where t1, . . . , tn are normal terms. In
other words, a term is normal if and only if it is “ hereditarily in head normal
form ”.

The head reduction of a term τ is defined as the (finite or infinite) sequence of
terms τ0,τ1, . . . ,τn , . . . such that τ0 = τ, and τn+1 is obtained from τn by a β-
reduction of the head redex of τn if such a redex exists ; if not, τn is in head
normal form, and the sequence ends with τn .
The weak head reduction of a term τ is the initial part of its head reduction
which stops as soon as we get a λ-term which begins with a λ. In other words,
we reduce the head redex only if there is no λ in front of it.

Notation. We will write t Â u (resp. t Âw u) whenever u is obtained from t by a
sequence of head β-reductions (resp. weak head β-reductions).
For example, we have (λx x)λx(λy y)z Âw λx(λy y)z Âλx z.

A λ-term t is said to be solvable if, for any term u, there exist variables x1, . . . , xk

and terms u1, . . . ,uk , v1, . . . , vl , (k, l ≥ 0) such that :
i) (t [u1/x1, . . . ,uk /xk])v1 . . . vl 'β u.

We have the following equivalent definitions :
(ii) t is solvable if and only if there exist variables x1, . . . , xk and terms u1, . . . ,uk ,
v1, . . . , vl such that (t [u1/x1, . . . ,uk /xk])v1 . . . vl 'β I (I is the term λx x).
(iii) t is solvable if and only if, given any variable x which does not occur in t ,
there exist terms u1, . . . ,uk , v1, . . . , vl such that :

Chapter 2. Representation of recursive functions 31

(t [u1/x1, . . . ,uk /xk])v1 . . . vl 'β x.

Obviously, (i) ⇒ (ii) ⇒ (iii). Now if (t [u1/x1, . . . ,uk /xk])v1 . . . vl 'β x, then :
(t [u1/x1, . . . ,uk /xk][u/x])v ′

1 . . . v ′
l 'β u,

and therefore
(t [u′

1/x1, . . . ,u′
k /xk])v ′

1 . . . v ′
l 'β u,

where u′
i = ui [u/x], v ′

j = v j [u/x] ; so we also have (iii) ⇒ (i).

Remarks. The following properties are immediate :
1. Let t be a closed term. Then t is solvable if and only if there exist terms v1, . . . , vl such
that (t)v1 . . . vl 'β I .
2. A term t is solvable if and only if its closure t̄ is solvable (the closure of t is, by defini-
tion, the term t̄ =λx1 . . .λxn t , where x1, . . . , xn are the free variables occurring in t).
3. If (t)v is a solvable term, then t is solvable.
4. Of course, the head normal form of a term needs not be unique. Nevertheless :
If a term t has a head normal form t0 = λx1 . . .λxk (x)u1 . . .un , then any head normal
form of t can be written λx1 . . .λxk (x)u′

1 . . .u′
n , with ui 'β u′

i .
Indeed, let t1 =λy1 . . .λyl (y)v1 . . . vp be another head normal form of t . By the Church-
Rosser theorem 1.24, there exists a term t2 which can be obtained by β-reduction from
t0 as well as from t1. Now, in t0 (resp. t1) all possible β-reductions have to be made in
u1, . . . ,un (resp. v1, . . . , vp). Hence :

t2 ≡λx1 . . .λxk (x)u′
1 . . .u′

n ≡λy1 . . .λyl (y)v ′
1 . . . v ′

p

with ui βu′
i , v j βv ′

j . This yields the expected result.

The following theorem will be proved in chapter 4 (theorem 4.9) :

Theorem 2.3. For every λ-term t, the following conditions are equivalent :
i) t is solvable ;
ii) t is β-equivalent to a head normal form ;
iii) the head reduction of t terminates (with a head normal form).

2. Representable functions

We define the Booleans : 0 = λxλy y and 1 = λxλy x. Then, for all terms t ,u,
((0)t)u can be reduced (by head reduction) to u, while ((1)t)u can be reduced
to t .

Given two terms t ,u and an integer k, let (t)k u denote the term (t) . . . (t)u (with
k occurrences of t) ; in particular, (t)0u = u.
Beware : the expression (t)k alone is not a λ-term.
We define the term k = λ f λx(f)k x ; k is called “ the numeral (or integer) k of
the λ-calculus ” (also known as Church numeral k, or Church integer k).
Notice that the Boolean 0 is the same term as the numeral 0, while the Boolean
1 is different from the numeral 1.

32 Lambda-calculus, types and models

Let ϕ be a partial function defined on Nn , with values either in N or in {0,1}.
Given a λ-term Φ, we say that Φ represents (resp. strongly represents) the func-
tion ϕ if, for all k1, . . . ,kn ∈N :

if ϕ(k1, . . . ,kn) is undefined, then (Φ)k1 . . .kn is not normalizable (resp. not
solvable) ;

if ϕ(k1, . . . ,kn) = k, then (Φ)k1 . . .kn is β-equivalent to k (or to k, in case the
range of ϕ is {0,1}).

Clearly, for total functions, these two notions of representation are equivalent.

Theorem 2.4. Every partial recursive function from Nk to N is (strongly) repre-
sentable by a term of the λ-calculus.

Recall the definition of the class of partial recursive functions.
Given f1, . . . , fk , partial functions from Nn to N, and g , partial function from Nk

to N, the partial function h, from Nn to N, obtained by composition, is defined
as follows :

h(p1, . . . , pn) = g (f1(p1, . . . , pn), . . . , fk (p1, . . . , pn))
if f1(p1, . . . , pn), . . . , fk (p1, . . . , pn) are all defined, and h(p1, . . . , pn) is undefined
otherwise.
Let h be a partial function from N to N. If there exists an integer p such that
h(p) = 0 and h(q) is defined and different from 0 for all q < p, then we denote
that integer p by µn{h(n) = 0} ; otherwise µn{h(n) = 0} is undefined.
We call minimization the operation which associates, with each partial func-
tion f fromNk+1 toN, the partial function g , fromNk toN, such that :

g (n1, . . . ,nk) =µn{ f (n1, . . . ,nk ,n) = 0}.

The class of partial recursive functions is the least class of partial functions,
with arguments and values in N, closed under composition and minimization,
and containing : the one argument constant function 0 and successor function ;
the two arguments addition, multiplication, and characteristic function of the
binary relation x ≤ y ; and the projections P k

n , defined by P k
n (x1, . . . , xn) = xk .

So it is sufficient to prove that the class of partial functions which are strongly
representable by a term of the λ-calculus satisfies these properties.

The constant function 0 is represented by the term λd 0.
The successor function onN is represented by the term :

suc =λnλ f λx((n) f)(f)x.
The addition and the multiplication (functions from N2 to N) are respectively
represented by the terms λmλnλ f λx((m) f)((n) f)x and λmλnλ f (m)(n) f .
The characteristic function of the binary relation m ≤ n on N is represented by
the term M =λmλn(((m)A)λd 1)((n)A)λd 0, where A =λ f λg (g) f .
The function P k

n is represented by the term λx1 . . .λxn xk .

Chapter 2. Representation of recursive functions 33

From now on, we denote the term (suc)n0 by n̂ ; so we have :
n̂ 'β n, and (suc)n̂ = �n +1.

Representation of composite functions

Given any two λ-terms t ,u, and a variable x with no free occurrence in t ,u, the
term λx(t)(u)x is denoted by t ◦u.

Lemma 2.5. (λg g ◦ s)k h Â λx(h)(s)k x for all closed terms s,h and every integer
k ≥ 1.

Recall that t Â u means that u is obtained from t by a sequence of head β-
reductions.
We prove the lemma by induction on k. The case k = 1 is clear. Assume the
result for k ; then
(λg g ◦ s)k+1h = (λg g ◦ s)k (λg g ◦ s)h Âλx((λg g ◦ s)h)(s)k x

(by induction hypothesis, applied with (λg g ◦ s)h instead of h)
Âλx(h◦ s)(s)k x ≡λx(λy(h)(s)y)(s)k x Âλx(h)(s)k+1x.

Q.E.D.

Lemma 2.6. Let Φ, ν be two terms. Define [Φ,ν] = (((ν)λg g ◦ suc)Φ)0. Then :
if ν is not solvable, then neither is [Φ,ν] ;
if ν 'β n (Church numeral), then [Φ,ν] 'β (Φ)n ; and if Φ is not solvable,

then neither is [Φ,ν].

The first statement follows from remark 3, page 31. If ν'β n, then :
(ν)λg g ◦ suc 'β (n)λg g ◦ suc = (λ f λh(f)nh)λg g ◦ suc 'β λh(λg g ◦ suc)nh.
By lemma 2.5, this term gives, by head reduction, λhλx(h)(suc)n x.
Hence [Φ,ν] 'β (Φ)(suc)n0 'β (Φ)n. Therefore, ifΦ is not solvable, then neither
is [Φ,ν] (remark 3, page 31).

Q.E.D.

The term [Φ,ν1, . . . ,νk] is defined, for k ≥ 2, by induction on k :
[Φ,ν1, . . . ,νk] = [[Φ,ν1, . . . ,νk−1],νk].

Lemma 2.7. Let Φ,ν1, . . . ,νk be terms such that each νi is either β-equivalent to
a Church numeral, or not solvable. Then :

if one of the ν′i s is not solvable, then neither is [Φ,ν1, . . . ,νk] ;
if νi 'β ni (1 ≤ i ≤ k), then [Φ,ν1, . . . ,νk] 'β (Φ)n1 . . .nk .

The proof is by induction on k : letΨ= [Φ,ν1, . . . ,νk−1] ; then :
[Φ,ν1, . . . ,νk] = [Ψ,νk].

If νk is not solvable, then, by lemma 2.6, neither is [Ψ,νk]. If νk is solvable (and
β-equivalent to a Church numeral), and if one of the νi ’s (1 ≤ i ≤ k −1) is not

34 Lambda-calculus, types and models

solvable, then Ψ is not solvable (induction hypothesis), and hence neither is
[Ψ,νk] (lemma 2.6). Finally, if νi 'β ni (1 ≤ i ≤ k), then, by induction hypothe-
sis,Ψ'β (Φ)n1 . . .nk−1 ; therefore, [Ψ,νk] 'β (Φ)n1 . . .nk (lemma 2.6).

Q.E.D.

Proposition 2.8. Let f1, . . . , fk be partial functions fromNn toN, and g a partial
function fromNk toN. Assume that these functions are all strongly representable
by λ-terms ; then so is the composite function g (f1, . . . , fk).

Choose termsΦ1, . . . ,Φk ,Ψwhich strongly represent respectively the functions
f1, . . . , fk , g . Then the term :

χ=λx1 . . .λxn[Ψ, (Φ1)x1 . . . xn , . . . , (Φk)x1 . . . xn]
strongly represents the composite function g (f1, . . . , fk).
Indeed, if p

1
, . . . , p

n
are Church numerals, then :

(χ)p
1

. . . p
n
'β [Ψ, (Φ1)p

1
. . . p

n
, . . . , (Φk)p

1
. . . p

n
].

Now each of the terms (Φi)p
1

. . . p
n

(1 ≤ i ≤ k) is, either unsolvable (and in that
case fi (p1, . . . , pn) is undefined), or β-equivalent to a Church numeral q

i
(then

fi (p1, . . . , pn) = qi). If one of the terms (Φi)p
1

. . . p
n

is not solvable, then, by
lemma 2.7, neither is (χ)p

1
. . . p

n
. If (Φi)p

1
. . . p

n
'β q

i
for all i (1 ≤ i ≤ k) where

q
i

is a Church numeral, then by lemma 2.7, we have :

(χ)p
1

. . . p
n
'β (Ψ)q

1
. . . q

k
.

Q.E.D.

3. Fixed point combinators

A fixed point combinator is a closed term M such that (M)F 'β (F)(M)F for
every term F . The main point is the existence of such terms. Here are two
examples :

Proposition 2.9. Let Y be the term λ f (λx(f)(x)x)λx(f)(x)x ; then, for every
term F , we have (Y)F 'β (F)(Y)F .

Indeed, (Y)F Â (G)G , where G =λx(F)(x)x ; therefore :
(Y)F Â (λx(F)(x)x)G Â (F)(G)G 'β (F)(Y)F .

Q.E.D.

Y is known as Curry’s fixed point combinator.
Note that we have neither (Y)F Â (F)(Y)F , nor even (Y)F β (F)(Y)F .

Proposition 2.10. Let Z be the term (A)A, where A ≡ λaλ f (f)(a)a f . Then, for
any term F , we have (Z)F Â (F)(Z)F .

Chapter 2. Representation of recursive functions 35

Indeed, (Z)F ≡ (A)AF Â (F)(A)AF ≡ (F)(Z)F .
Q.E.D.

Z is called Turing’s fixed point combinator.

Proposition 2.11.
Every fixed point combinator is solvable, but not normalizable.

Let M be a fixed point combinator and f a variable. Then :
(M)0 f 'β ((0)(M)0) f 'β f and it follows that M is solvable.
If M is normalizable, then so is M f . Let M ′ be the normal form of M f . Since
M f 'β (f)(M) f , it follows that M ′ 'β (f)M ′. But these terms are normal, so
that M ′ = (f)M ′ which is clearly impossible.

Q.E.D.

Representation of functions defined by minimization

The following lemma is an application of results in chapter 4.

Lemma 2.12.
Let b, t0, t1 be terms, and suppose b 'β 1 (resp. 0). Then (b)t0t1 Âw t0 (resp. t1).

Recall that 1,0 are respectively the booleans λxλy x and λxλy y ; and that Âw denotes

the weak head reduction (see page 30).

This lemma is the particular case of theorem 4.11, when k = 2 and n = 0.
Q.E.D.

Lemma 2.13. There exists a closed term ∆ such that, for all termsΦ,n :
(∆Φ)n Â ((Φn)(∆Φ)(suc)n)n.

Let T = λδλϕλν((ϕν)(δϕ)(suc)ν)ν. Then ∆ is defined as a fixed point of T ,
by means, for example, of Curry’s fixed point combinator : we take ∆ = (D)D ,
where D =λx(T)(x)x. Then :
(∆Φ)n = (D)DΦn Â ((T)(D)D)Φn = (T)∆Φn Â ((Φn)(∆Φ)(suc)n)n.

We can also take ∆= D ′D ′, where D ′ is the normal form of D , that is :
D ′ =λxλϕλν((ϕν)(xxϕ)(suc)ν)ν.

The Turing fixed point combinator gives another solution :
∆= A AT with A =λaλ f (f)(a)a f .
Q.E.D.

Lemma 2.14. Let Φ be a λ-term and n ∈N.
IfΦn is not solvable, then neither is (∆Φ)n.
IfΦn 'β 0 (Boolean), then (∆Φ)n 'β n.
IfΦn 'β 1 (Boolean), then (∆Φ)n̂ Â (∆Φ)p̂ with p = n +1.

36 Lambda-calculus, types and models

(Recall that n̂ = (suc)n0).

Indeed, it follows from lemma 2.13 that (∆Φ)n Â ((Φn)(∆Φ)(suc)n)n. Hence,
if Φn is not solvable, then neither is (∆Φ)n (remark 3, page 31). Obviously, if
Φn 'β 0 (Boolean), then (∆Φ)n 'β n.
On the other hand, according to the same lemma, we also have :
(∆Φ)n̂ Â ((Φn̂)(∆Φ)(suc)n̂)n̂ ; by lemma 2.12, ifΦn̂ 'β 1 (Boolean), then :
((Φn̂)(∆Φ)(suc)n̂)n̂ Â (∆Φ)(suc)n̂.
Therefore (∆Φ)n̂ Â (∆Φ)(suc)n̂ = (∆Φ)p̂ with p = n +1.

Q.E.D.

Proposition 2.15. Let f (n1, . . . ,nk ,n) be a partial function from Nk+1 to N, and
suppose that it is strongly representable by a term of the λ-calculus. Then the
partial function defined by g (n1, . . . ,nk) =µn{ f (n1, . . . ,nk ,n) = 0} is also strongly
representable.

Let ψ be the partial function from Nk+1 to {0,1}, which has the same domain
as f , and such that ψ(n1, . . . ,nk ,n) = 0 ⇔ f (n1, . . . ,nk ,n) = 0 .
Then g (n1, . . . ,nk) =µn{ψ(n1, . . . ,nk ,n) = 0}.
Let F denote a λ-term which strongly represents f ; consider the term :

Ψ=λx1 . . .λxkλx((F x1 . . . xk x)λd 1)0.
Then, it is easily seen thatΨ strongly represents ψ.
Now consider the term ∆ constructed above (lemma 2.13).
We show that the term :

G =λx1 . . .λxk ((∆)(Ψ)x1 . . . xk)0
strongly represents the function g . Indeed, let n1, . . . ,nk ∈N ; we put :
Φ= (Ψ)n1 . . .nk and therefore, we get Gn1 . . .nk Â (∆Φ)0.

If g (n1, . . . ,nk) is defined and equal to p, then ψ(n1, . . . ,nk ,n) is defined and
equal to 1 for n < p and to 0 for n = p. Thus Φn = (Ψ)n1 . . .nk n 'β 1 for n < p,
andΦp = (Ψ)n1 . . .nk p 'β 0.

Now, we can apply lemma 2.14, and we get successively (since 0 = 0̂) :
Gn1 . . .nk Â (∆Φ)0 Â (∆Φ)1̂ Â ·· · Â (∆Φ)p̂ 'β p.

If g (n1, . . . ,nk) is undefined, there are two possibilities :

i) ψ(n1, . . . ,nk ,n) is defined and equal to 1 for n < p and is undefined for n = p.
Then we can successively deduce from lemma 2.14 (since 0 = 0̂) :
Gn1 . . .nk Â (∆Φ)0 Â (∆Φ)1̂ Â ·· · Â (∆Φ)p̂ ; the last term obtained is not solvable,
since neither is Φp =Ψn1 . . .nk p (lemma 2.14). Consequently, Gn1 . . .nk is not
solvable (theorem 2.3,iii) ;

ii) ψ(n1, . . . ,nk ,n) is defined and equal to 1 for all n.
Then (again by lemma 2.14) :
Gn1 . . .nk Â (∆Φ)0 Â (∆Φ)1̂ Â ·· · Â (∆Φ)n̂ Â ·· ·

Chapter 2. Representation of recursive functions 37

So the head reduction of Gn1 . . .nk does not end. Therefore, by theorem 2.3,
Gn1 . . .nk is not solvable.

Q.E.D.

It is intuitively clear, according to Church’s thesis, that any partial function from
Nk to N, which is representable by a λ-term, is partial recursive. We shall not
give a formal proof of this fact. So we can state the

Theorem 2.16 (Church-Kleene theorem). The partial functions from Nk to N
which are representable (resp. strongly representable) by a term of the λ-calculus
are the partial recursive functions.

The λ-terms which represent a given partial recursive function, that we obtain
by this method, are not normal in general, and even not normalizable. Indeed,
in the proof of lemma 2.13, we use a fixed point combinator, which is never
a normalizable term (proposition 2.11). Let us show that we can get normal
terms.

Lemma 2.17. Let x be a variable and t ∈Λ. Then, there exists a normal term t ′

such that t [n/x] 'β t ′[n/x] for every n ∈N.

We define t ′ by induction on the length of t :

if t is a variable, then t ′ = t ;
if t =λy u, then t ′ =λy u′ ;
if t = uv , then t ′ = (x)Iu′v ′ (with I =λy y).

It is trivial to show, by induction on the length of t , that t ′ is normal and that
t [n/x] 'β t ′[n/x] for every n ∈ N. We simply have to observe that (n)I 'β I if
n ∈N.

Q.E.D.

Corollary 2.18. For every partial recursive functionϕ, there exists a normal term
which (strongly) represents ϕ.

For simplicity, we suppose ϕ to be a unary function. Let Φ be a closed λ-term
which strongly represents ϕ (theorem 2.16) and put t = Φx. Then Ψ = λx t ′ is
normal, by lemma 2.17, and strongly represents ϕ : indeed, if n ∈ N, we have
Ψn 'β t ′[n/x] 'β t [n/x] =Φn.

Q.E.D.

4. The second fixed point theorem

Consider a recursive enumeration : n 7→ tn of the terms of the λ-calculus. The
inverse function will be denoted by t 7→ [[t]] : more precisely, if t is a λ-term,

38 Lambda-calculus, types and models

then [[t]] is the Church numeral n such that tn = t , which will be called the
numeral of t .
The function n 7→ [[(tn)n]] is thus recursive, fromN to the set of Church numer-
als. By theorem 2.16, there exists a term δ such that (δ)n 'β [[(tn)n]], for every
integer n.

Now, given an arbitrary term F , let B = λx(F)(δ)x. Then, for any integer n, we
have (B)n 'β (F)[[(tn)n]].
Take n = [[B]], that is to say tn = B ; then (tn)n = (B)[[B]]. If we denote the term
(B)[[B]] by A, we obtain A 'β (F)[[A]]. So we have proved the :

Theorem 2.19.
For every λ-term F , there exists a λ-term A such that A 'β (F)[[A]].

Remark. The intuitive meaning of theorem 2.19 is that we can write, as ordinary λ-

terms, programs using a new instruction σ (for “self”) which denotes the numeral of

the program itself.

Indeed, if such a program is written as Φ[σ/x], where Φ is a λ-term, consider the λ-

terms F = λxΦ, and A given by theorem 2.19. Then, we have A 'β (F)[[A]] and there-

fore, A 'β Φ[[[A]]/x] ; thus, A is the λ-term we are looking for.

Theorem 2.20. Let X ,Y be two non-empty disjoint sets of terms, which are sat-
urated under the equivalence relation 'β. Then X and Y are recursively insep-
arable.

Suppose that X and Y are recursively separable. This means that there exists
a recursive set A ⊂ Λ such that X ⊂ A and Y ⊂ A c (the complement of A).
By assumption, there exist terms ξ and η such that ξ ∈ X and η ∈ Y . Since the
characteristic function of A is recursive, there is a term Θ such that, for every
integer n : (Θ)n 'β 1 ⇔ tn ∈A and (Θ)n 'β 0 ⇔ tn ∉A .
Now let F = λx(Θ)xηξ. According to theorem 2.19, there exists a term A such
that (F)[[A]] 'β A, which implies (Θ)[[A]]ηξ'β A.
If A ∈A , then, by the definition ofΘ, (Θ)[[A]] 'β 1, and it follows that :
(Θ)[[A]]ηξ 'β η. Therefore A 'β η. Since η ∈ Y ⊂ A c and Y is saturated under
the equivalence relation 'β, we conclude that A ∈ Y , thus A ∉ A , which is a
contradiction.
Similarly, if A ∉ A , then (Θ)[[A]] 'β 0, hence (Θ)[[A]]ηξ 'β ξ, and A 'β ξ. Since
ξ ∈X ⊂A and X is saturated under the equivalence relation 'β, we conclude
that A ∈X , thus A ∈A , which is again a contradiction.

Q.E.D.

Corollary 2.21. The set of normalizable (resp. solvable) λ-terms is not recursive.

Chapter 2. Representation of recursive functions 39

Apply theorem 2.20 : take X as the set of normalizable (resp. solvable) terms,
and Y =X c .

Q.E.D.

The same method shows that, for instance, the set of λ-terms which are β-
equivalent to a Church integer, or the set of λ-terms which are β-equivalent
to a given one t0, are not recursive.

The set of strongly normalizable λ-terms is also not recursive but, since it is not
closed for β-equivalence, the above method does not work to prove this. The
undecidability of strong normalization will be proved in chapter 10.

References for chapter 2

[Bar84], [Hin86].
(The references are in the bibliography at the end of the book).

40 Lambda-calculus, types and models

Chapter 3

Intersection type systems

1. System DΩ

A type system is a class of formulas in some language, the purpose of which is
to express some properties of λ-terms. By introducing such formulas, as com-
ments in the terms, we construct what we call typed terms, which correspond
to programs in a high level programming language.
The main connective in these formulas is “ → ”, the type A → B being that of
the “ functions ” from A to B , that is to say from the set of terms of type A to the
set of terms of type B .
The first type system which we shall examine consists of propositional formu-
las. It uses the conjunction ∧ in a very special way (this is why it is called inter-
section type system). It does not seem that this system can be used as a model
for a programming language. However, it is very useful as a tool for studying
pure λ-calculus.
We will call it system DΩ.
The types of this system are the formulas built with :

a constantΩ (type constant) ;
variables X ,Y , . . . (type variables) ;
the connectives → and ∧.

We will write A1, A2, . . . , Ak → A instead of A1 → (A2 → (. . . (Ak → A) . . .)).

The positive and negative occurrences of a variable X in a type A are defined by
induction on the length of A :

if A is a variable, or A =Ω, then the possible occurrence of X in A is
positive ;

if A = B ∧C , then any positive (resp. negative) occurrence of X in B
or in C is positive (resp. negative) in A ;

41

42 Lambda-calculus, types and models

if A = B →C , then the positive (resp. negative) occurrences of X in
A are the positive (resp. negative) occurrences of X in C , and the
negative (resp. positive) occurrences of X in B .

We also define the final occurrences of the variable X in the type A :

if A is a variable, or A =Ω, then the possible occurrence of X in A is
final ;

if A = B ∧C , then the final occurrences of X in A are its final occur-
rences in B and its final occurrences in C ;

if A = B → C , then the final occurrences of X in A are its final oc-
currences in C .

Hence every final occurrence of a variable in a type is positive.

By a variable declaration, we mean an ordered pair (x, A), where x is a variable
of the λ-calculus, and A is a type. It will be denoted by x : A instead of (x, A).

A context Γ is a mapping from a finite set of variables to the set of all types. Thus
it is a finite set {x1 : A1, . . . , xk : Ak } of variable declarations, where x1, . . . , xk are
distinct variables ; we will denote it by x1 : A1, . . . , xk : Ak (without the braces).
So, in such an expression, the order does not matter.
We will say that xi is declared of type Ai in the context Γ.
The integer k may be 0 ; in that case, we have the empty context.
We will write Γ, x : A in order to denote the context obtained by adding the
declaration x : A to the context Γ, provided that x is not already declared in Γ.

Given aλ-term t , a type A, and a context Γ, we define, by means of the following
rules, the notion : t is of type A in the contextΓ (we will also say : “ t may be given
type A in the context Γ ”) ; this will be denoted by Γ`DΩ t : A (or Γ` t : A if there
is no ambiguity) :

1. If x is a variable, then Γ, x : A `DΩ x : A.
2. If Γ, x : A `DΩ t : B , then Γ`DΩ λx t : A → B .
3. If Γ`DΩ t : A → B and Γ`DΩ u : A, then Γ`DΩ (t)u : B .
4. If Γ`DΩ t : A∧B , then Γ`DΩ t : A and Γ`DΩ t : B .
5. If Γ`DΩ t : A and Γ`DΩ t : B , then Γ`DΩ t : A∧B .
6. Γ`DΩ t :Ω (for all t and Γ).

Any expression of the form Γ`DΩ t : A obtained by means of these rules will be
called a typing of t in system DΩ. A typable term is a term which may be given
some type in some context.

The notation `DΩ t : A will mean that t is of type A in the empty context.

Note that, because of rule 6, there are terms which are typable in the context Γ,
while not all of their free variables are declared in that context.

Chapter 3. Intersection type systems 43

Proposition 3.1. Suppose Γ `DΩ t : A, and let Γ′ ⊂ Γ which contains all those
declarations in Γwhich concern variables occurring free in t . Then Γ′ `DΩ t : A.

The proof is immediate, by induction on the number of rules used to obtain
Γ`DΩ t : A.

Q.E.D.

Lemma 3.2. If Γ, x : F `DΩ t : A, then for every variable x ′ which is not declared
in Γ and not free in t , we have Γ, x ′ : F `DΩ t [x ′/x] : A, and the length of the
derivation is the same for both typings.

We consider the derivation of Γ, x : F `DΩ t : A, and we perform on it an ar-
bitrary permutation of variables. Obviously we obtain a correct derivation in
DΩ. Now, we choose the permutation which swap x and x ′, and does not
change any other variable. Since x ′ is not declared in Γ, we obtain a deriva-
tion of Γ, x ′ : F `DΩ t [x ′/x, x/x ′] : A. But x ′ is not free in t , and therefore
t [x ′/x, x/x ′] = t [x ′/x].

Q.E.D.

Proposition 3.3. If Γ`DΩ t : A and Γ′ ⊃ Γ, then Γ′ `DΩ t : A.

Proof by induction on the length of the derivation of Γ`DΩ t : A. Consider the
last rule used in this derivation. If it is one of the rules 1, 3, 4, 5, 6, then the
induction step is immediate.
If it is rule 2, then t = λx u, A = B → C , and we have Γ, x : B `DΩ u : C . Let
x ′ be any variable not declared in Γ′ and not free in u. By lemma 3.2, we get
Γ, x ′ : B `DΩ u[x ′/x] : C , and the derivation has the same length. By induction
hypothesis, we get Γ′, x ′ : B `DΩ u[x ′/x] : C .
Therefore Γ′ `DΩ λx ′u[x ′/x] : B →C by rule 2. But, since x ′ is not free in u, we
have λx ′u[x ′/x] =λx u = t , and therefore Γ′ `DΩ t : A.

Q.E.D.

Normalization theorems

Since types can be thought of as properties of λ-terms, it seems natural to try
and associate with each type a subset ofΛ (the set of all λ-terms). We shall now
describe a way of doing this.

Given any two subsets X and Y of Λ, we denote by X → Y , the subset of Λ
defined by the following condition :

u ∈ (X →Y) ⇔ (u)t ∈Y for all t ∈X .

Obviously :

If X ⊃X ′ and Y ⊂Y ′, then (X →Y) ⊂ (X ′ →Y ′).

44 Lambda-calculus, types and models

A subset X ofΛ is said to be saturated if and only if, for all terms t , t1,. . . , tn , u,
we have (u[t/x])t1 . . . tn ∈X ⇒ (λx u)t t1 . . . tn ∈X .

The intersection of any set of saturated subsets of Λ is clearly saturated. Also
clear is the fact that, for any subset X of Λ, the set of terms which reduce to
an element of X by leftmost reduction is saturated. Similarly, the set of terms
which reduce to an element of X by head reduction is saturated.

Proposition 3.4. Let Y be a saturated subset ofΛ ; then X →Y is saturated for
all X ⊂Λ.

Assume (u[t/x])t1 . . . tn ∈ X → Y ; then for all v in X , (u[t/x])t1 . . . tn v ∈ Y ,
and, since Y is saturated, (λx u)t t1 . . . tn v ∈Y .
Therefore, (λx u)t t1 . . . tn ∈X →Y .

Q.E.D.

An interpretation I is, by definition, a function which associates, with each
type variable X , a saturated subset of Λ, denoted by |X |I (or |X | if there is no
ambiguity). Given such a function, we can extend it and associate with each
type A a saturated subset of Λ, denoted by |A|I (or simply |A|), defined as fol-
lows, by induction on the length of A :

if A is a type variable, then |A| is given with the interpretation I ;
|Ω| =Λ ;
if A = B →C , then |A| = |B |→ |C | ;
if A = B ∧C , then |A| = |B |∩ |C |.

Lemma 3.5 (Adequacy lemma).
Let I be an interpretation, and u a λ-term, such that :

x1 : A1, . . . , xk : Ak `DΩ u : A.
If t1 ∈ |A1|I ,. . . , tk ∈ |Ak |I , then u[t1/x1, . . . , tk /xk] ∈ |A|I .

The proof proceeds by induction on the number of rules used to obtain the
typing of u. Consider the last one :

If it is rule 1, then u is one of the variables xi , and A = Ai ; in that case
u[t1/x1, . . . , tk /xk] = ti , and the conclusion is immediate.

If it is rule 2, then A = B →C and u = λx v . We can assume that x does not
occur free in t1, . . . , tk and is different from x1, . . . , xk ; moreover :
x : B , x1 : A1, . . . , xk : Ak `DΩ v : C .
By induction hypothesis, v[t/x, t1/x1, . . . , tk /xk] ∈ |C | holds for every t ∈ |B |. But
it then follows from our assumptions about x that :

v[t/x, t1/x1, . . . , tk /xk] = v[t1/x1, . . . , tk /xk][t/x].
Then we have (λx v[t1/x1, . . . , tk /xk])t ∈ |C |, since C is saturated. Now this holds
for all t ∈ |B |, so λx v[t1/x1, . . . , tk /xk] ∈ (|B |→ |C |) = |A|.

Chapter 3. Intersection type systems 45

If it is rule 3, then u = (w)v , where w is of type B → A and v is of type B in
the context x1 : A1, . . . , xk : Ak . By induction hypothesis, we have :
w[t1/x1, . . . , tk /xk] ∈ |B → A|, and v[t1/x1, . . . , tk /xk] ∈ |B |, thus :
(w[t1/x1, . . . , tk /xk])v[t1/x1, . . . , tk /xk] ∈ |A|.

If it is rule 4, then we know that a previous typing of u gave it the type A∧B
(or B ∧ A), in the same context. By induction hypothesis :
u[t1/x1, . . . , tk /xk] ∈ |A∧B | = |A|∩ |B |, and therefore :
u[t1/x1, . . . , tk /xk] ∈ |A|.

If it is rule 5, then A = B ∧C , and, by previous typings (in the same con-
text), u is of type B as well as of type C . By induction hypothesis, we have
u[t1/x1, . . . , tk /xk] ∈ |B |, |C |, and therefore u[t1/x1, . . . , tk /xk] ∈ |B ∧C |.

If it is rule 6, then the result is obvious.
Q.E.D.

A type A is said to be trivial if no variable has a final occurrence in A. (For
example A →Ω∧ (B →Ω) is a trivial type, for all A and B).
The trivial types are those obtained by applying the following rules :

Ω is trivial ;
if A is trivial, then B → A is trivial for every B ;
if A, B are trivial, then so is A∧B .

As an immediate consequence, we have :

If A is a trivial type, then its value |A|I under any interpretation I is the whole
setΛ.

Lemma 3.6. Let N0, N be subsets ofΛ, with the following properties :
N is saturated, N0 ⊂N , N0 ⊂ (Λ→N0), N ⊃ (N0 →N).

Let I be the interpretation such that |X |I = N for every type variable X . Then
|A|I ⊃N0 for every type A, and |A|I ⊂N for every non-trivial type A.

We first prove, by induction on A, that |A|I ⊃N0 ; this is obvious whenever A is
a type variable, or A =Ω, or A = B ∧C .
If A = B →C , then |A| = |B |→ |C |, and |B | ⊂Λ, |C | ⊃N0 (induction hypothesis) ;
hence |A| ⊃Λ→N0, and since it has been assumed thatΛ→N0 ⊃N0, we have
|A| ⊃N0.

Now we prove, by induction on A, that |A| ⊂N for every non-trivial type A. The
result is immediate whenever A is a type variable, or A =Ω, or A = B ∧C .
If A = B → C , then C is not trivial ; we have |A| = |B | → |C |, |B | ⊃ N0 (this has
just been proved), and |C | ⊂N (induction hypothesis). Hence |A| ⊂ (N0 →N),
and since we assumed that (N0 →N) ⊂N , we can conclude that |A| ⊂N .

Q.E.D.

46 Lambda-calculus, types and models

Theorem 3.7 (Head normal form theorem). Let t be a term which is typable
with a non-trivial type A, in system DΩ. Then the head reduction of t is finite.

The converse of this theorem is true and will be proved later (theorem 4.9).

Let N0 = {(x)v1 . . . vp ; x is a variable, v1, . . . , vp ∈ Λ} and N = {t ∈ Λ ; the head
reduction of t is finite}.

Lemma 3.8. N0 and N satisfy the hypotheses of lemma 3.6.

Clearly, N0 ⊂N and N0 ⊂Λ→N0. Also, N is saturated :
indeed, if (u[t/x])t1 . . . tn has a finite head reduction, then the head reduction
of (λx u)t t1 . . . tn is also finite.
We now prove that N ⊃ N0 → N : let u ∈ N0 → N ; then, for any variable x,
(u)x has a finite head reduction (since x ∈ N0). Suppose that the head reduc-
tion of u is infinite, namely : u,u1, . . . ,un , . . . Then there is an n such that un

starts with λ ; otherwise the head reduction of (u)x would be :
(u)x, (u1)x, . . . , (un)x, . . . which is infinite.
Let k be the least integer such that uk starts with λ ; for instance uk = λy vk ,
and then un =λy vn for every n ≥ k.
Thus the head reduction of vk is : vk , vk+1, . . . Therefore, the head reduction of
(u)x is : (u)x, (u1)x, . . . , (uk)x, vk [x/y], vk+1[x/y], . . . Again, it is infinite and we
have a contradiction.

Q.E.D.

Now we can prove theorem 3.7 : let t be a term which is typable with a non-
trivial type A in the context x1 : A1, . . . , xk : Ak . Consider the interpretation I

such that |X |I = N for every type variable X . It follows from the adequacy
lemma that, whenever ai ∈ |Ai |I , t [a1/x1, . . . , ak /xk] ∈ |A|I . By lemma 3.6,
|Ai |I ⊃N0, so all variables are in |Ai |I , and therefore t ∈ |A|I .
Also by lemma 3.6, |A|I ⊂N , thus t ∈N and the head reduction of t is finite.

Q.E.D.

An ordered pair (N0,N) of subsets of Λ is said to be adapted if it satisfies the
following properties :

i) N is saturated ;
ii) N0 ⊂N ; N0 ⊂ (N →N0) ; (N0 →N) ⊂N .

An equivalent way of stating condition (ii) is :
ii’) N0 ⊂ (N →N0) ⊂ (N0 →N) ⊂N .

Indeed, the inclusion (N →N0) ⊂ (N0 →N) is an immediate consequence of
N0 ⊂N .

Lemma 3.9. Let (N0,N) be an adapted pair, and I an interpretation such that,
for every type variable X , |X |I is a saturated subset of N containing N0. Then,

Chapter 3. Intersection type systems 47

for every type A with no negative (resp. positive) occurrence of the symbol Ω, we
have the inclusion |A|I ⊃N0 (resp. |A|I ⊂N).

The proof is by induction on A. The conclusion is immediate whenever A is a
type variable or A =Ω.
If A = B∧C , and if there is no negative (resp. positive) occurrence ofΩ in A, then
the situation is the same in B , and in C . Therefore, by induction hypothesis, we
have |B |I , |C |I ⊃ N0 (resp. ⊂ N). Thus |B ∧C |I = |B |I ∩ |C |I ⊃ N0 (resp.
⊂N).
If A = B →C , and if Ω has no negative occurrence in A, then Ω has no positive
(resp. negative) occurrence in B (resp. C). By induction hypothesis, |B |I ⊂ N

and |C |I ⊃ N0. Hence |B |I → |C |I ⊃ N → N0. Since (N0,N) is an adapted
pair, we have N →N0 ⊃N0, and therefore |A|I ⊃N0.
If A = B → C and Ω has no positive occurrence in A, then Ω has no negative
(resp. positive) occurrence in B (resp. C). By induction hypothesis, |B |I ⊃ N0

and |C |I ⊂N . Therefore, |B |I → |C |I ⊂N0 →N . Now (N0,N) is an adapted
pair, so N0 →N ⊂N , and, finally, |A|I ⊂N .

Q.E.D.

Now we shall prove that the pair (N0,N) defined below is adapted :
N is the set of all terms which are normalizable by leftmost β-reduction :
Namely, we have t ∈N if and only if the sequence obtained from t by leftmost
β-reduction ends with a normal term.
N0 is the set of all terms of the form (x)t1 . . . tn , where t1, . . . , tn ∈ N and x is a
variable. In particular, all variables are in N0 (take n = 0).
We now check conditions (i) and (ii) in the definition of adapted pairs (page 46) :
i) N is saturated : clearly, if (u[t/x])t1 . . . tn is normalizable by leftmostβ-reduc-
tion, then so is (λx u)t t1 . . . tn .
ii) N0 ⊂ N : if t ∈ N0, then t = (x)t1 . . . tn for some variable x and t1, . . . , tn are
all normalizable by leftmost β-reduction. Thus t clearly has the same property.
The inclusion N0 ⊂ (N →N0) is obvious.
Now we come to (N0 → N) ⊂ N : let t ∈ N0 → N and x be some variable not
occurring in t ; since x ∈N0, (t)x ∈N , thus (t)x is normalizable by leftmost β-
reduction. We need to prove that the same property holds for t ; this is done by
induction on the length of the normalization of (t)x by leftmost β-reduction.
If t does not start with λ, then the first step of this normalization is a leftmost
β-reduction in t , which produces a term t ′ ; thus the term (t ′)x has a normal-
ization by leftmost β-reduction which is shorter than that of (t)x. Hence, by
induction hypothesis, t ′ is normalizable by leftmost β-reduction, and therefore
so is t .
If t =λy u, then the first leftmost β-reduction in (t)x produces the term u[x/y],
which is therefore normalizable by leftmost β-reduction. Hence u satisfies the

48 Lambda-calculus, types and models

same property, and so does t =λy u : let u = u0,u1, . . . ,un be the normalization
of u by leftmost β-reduction, then that of λy u is : λy u,λy u1, . . . ,λy un .

Theorem 3.10 (Normalization theorem). Let t be a typable term in system DΩ,
of type A in the context x1 : A1, . . . , xk : Ak . Suppose that the symbol Ω has no
positive occurrence in A, and no negative occurrence in A1, . . . , Ak . Then t is nor-
malizable by leftmost β-reduction.

Define an interpretation I by taking |X |I = N for every type variable X . It
follows from lemma 3.9 that |Ai |I ⊃ N0 ; now xi ∈ N0 (by definition of N0),
thus xi ∈ |Ai |I ; by the adequacy lemma, we have :
t = t [x1/x1, . . . , xn/xn] ∈ |A|I .
Now by lemma 3.9, |A|I ⊂N and therefore t ∈N .

Q.E.D.

The converse of this theorem will be proved later (theorem 4.13).

Corollary 3.11. Suppose that x1 : A1, . . . , xk : Ak `DΩ t : A, and Ω does not occur
in A, A1,. . . ,Ak . Then t is normalizable by leftmost β-reduction.

An infinite quasi leftmost reduction of a term t ∈ Λ is an infinite sequence of
terms t = t0, t1, . . . , tn , . . . such that :

for every n ≥ 0, tnβ0 tn+1 (tn+1 is obtained by reducing a redex in tn) ;
for every n ≥ 0, there exists a p ≥ n such that tp+1 is obtained by reducing

the leftmost redex in tp .
We can state a strengthened normalization theorem :

Theorem 3.12 (Quasi leftmost normalization theorem).
Suppose x1 : A1, . . . , xk : Ak `DΩ t : A, and Ω does not occur in A,A1,. . . ,Ak . Then
there is no infinite quasi leftmost reduction of t .

In order to prove it, we again define an adapted pair (N0,N) :
N is the set of all terms which do not admit an infinite quasi leftmost reduc-
tion ; N0 is the set of all terms of the form (x)t1 . . . tn , where x is some variable,
and t1, . . . , tn ∈ N . In particular, all variables are in N0 (take n = 0). We check
conditions (i) and (ii) of the definition of adapted pairs (page 46) :

i) N is saturated : given (λx u)t t1 . . . tn = τ0, we assume the existence of an
infinite quasi leftmost β-reduction τ0,τ1, . . . ,τn , . . ., and we prove :
(u[t/x])t1 . . . tn ∉ N by induction on the least integer k such that τk+1 is ob-
tained from τk by reducing the leftmost redex.
If k = 0, then τ1 = (u[t/x])t1 . . . tn , and, therefore, this term admits an infinite
quasi leftmost β-reduction. If k > 0, then τ1 is obtained by a reduction ei-
ther in u, or in t , t1, . . . , tn , so it can be written τ1 = (λx u′)t ′t ′1 . . . t ′n (with either

Chapter 3. Intersection type systems 49

u = u′ or uβ0 u′, and the same for t , t1, . . . , tn). Now the induction hypothesis
applies to τ1 (since the integer corresponding to its quasi leftmost β-reduction
is k−1), so (u′[t ′/x])t ′1 . . . t ′n ∉N . But we have (u[t/x])t1 . . . tnβ (u′[t ′/x])t ′1 . . . t ′n ,
and therefore there exists an infinite quasi leftmost β-reduction for the term
(u[t/x])t1 . . . tn .
ii) N0 ⊂ N : let τ ∈ N0, say τ = (x)t1 . . . tn , where t1, . . . , tn ∈ N and x is some
variable. Suppose that τ admits an infinite quasi leftmost β-reduction, say
τ = τ0, τ1, . . . , τk , . . . ; then τk = (x)t k

1 . . . t k
n , with either t k

i = t k+1
i or t k

i β0 t k+1
i .

Clearly, there exists i ≤ n such that t k
i contains the leftmost redex of τk for every

large enough k. Hence ti admits an infinite quasi leftmost β-reduction, contra-
dicting our assumption.
The inclusion N0 ⊂ (N →N0) is obvious.
It remains to prove that (N0 → N) ⊂ N : let τ ∈ N0 → N and x be a vari-
able which does not occur in τ ; since x ∈ N0, (τ)x ∈ N . If τ admits an infinite
quasi leftmost β-reduction, say τ = τ0, τ1, . . . , τk , . . . , then so does (τ)x (con-
tradicting the definition of N) : indeed, if none of the τn ’s start with λ, then
(τ0)x, (τ1)x, . . . , (τk)x,. . . is an infinite quasi leftmost β-reduction of (τ)x. If
τk = λy τ′k , then τ′k admits an infinite quasi leftmost reduction, and so does
τ′k [x/y]. Hence (τ0)x, (τ1)x, . . . , (τk)x, τ′k [x/y] is an initial segment of an infi-
nite quasi leftmost reduction of the term (τ)x.

Now the end of the proof of the quasi leftmost normalization theorem 3.12 is
the same as that of the normalization theorem 3.10.

Q.E.D.

The following theorem is another application of the same method.

Theorem 3.13. Suppose x1 : A1, . . . , xk : Ak `DΩ t : A, and Ω does not occur in
A,A1,. . . ,Ak . Then there exists a βη-normal term u such that, if t βη t ′ for some
t ′, then t ′βηu.

Remark. In particular, t is βη-normalizable (take t ′ = t) and its βη-normal form is

unique. The interesting fact is that the proof does not use the Church-Rosser theorems

of chapter 1 (theorems 1.24 and 1.32).

We define a new adapted pair (N0,N).
N is the set of all terms with the desired property ; in other words :
t ∈ N ⇔ there exists a βη-normal term u such that, if t βη t ′ for some t ′, then
t ′βηu.
N0 = {(x)t1 . . . tn ; x is any variable, t1 . . . tn ∈N }.
We now check conditions (i) and (ii) of the definition of adapted pairs (page 46) :

i) N is saturated : suppose that (u[t/x])t1 . . . tn ∈ N , and let τ be its (unique)
βη-normal form. Let v ∈Λ be such that :
(?) (λx u)t t1 . . . tnβηv .

50 Lambda-calculus, types and models

We show that v βητ. Consider, at the beginning of the βη-reduction (?), the
longest possible sequence of βη-reductions which take place inside u or t or t1

or . . . or tn ; this gives (λx u′)t ′t ′1 . . . t ′n , with uβηu′, t βη t ′ and ti βη t ′i .
Then, there are three possibilities :
• The βη-reduction (?) stops there.
Thus, v = (λx u′)t ′t ′1 . . . t ′n so that v βη (u′[t ′/x])t ′1 . . . t ′n .
But we have (u[t/x])t1 . . . tnβη (u′[t ′/x])t ′1 . . . t ′n , because the relation βη is λ-
compatible. Since (u[t/x])t1 . . . tn ∈N , it follows from the definition of N that
(u′[t ′/x])t ′1 . . . t ′nβητ ; therefore v βητ.
• The following step consists in reducing the β-redex (λx u′)t ′ and gives :
(u′[t ′/x])t ′1 . . . t ′n . Therefore, we have (u′[t ′/x])t ′1 . . . t ′nβηv and it follows that
(u[t/x])t1 . . . tnβηv . Since (u[t/x])t1 . . . tn ∈ N , it follows from the definition
of N that v βητ.
• λx u′ is an η-redex, i.e. u′ = (u′′)x and x is not free in u′′ ; moreover, the
following step consists in reducing this η-redex. This gives (u′′)t ′t ′1 . . . t ′n , i.e.
(u′[t ′/x])t ′1 . . . t ′n . Thus, the result follows as in the previous case.

ii) N0 ⊂N : let t = (x)t1 . . . tn ∈N0, where x is some variable, and t1, . . . , tn ∈N .
Suppose that t βη t ′. We have t ′ = (x)t ′1 . . . t ′n with ti βη t ′i . Therefore t ′i βηui ,
where ui is the (unique) βη-normal form of ti . It follows that t ′βη (x)u1 . . .un .
The inclusion N0 ⊂ (N →N0) is obvious, by definition of N0.
It remains to prove that (N0 →N) ⊂N : let t ∈ (N0 →N) and x be a variable
which does not occur in t ; since x ∈N0, we have (t)x ∈N .
Let u be the (unique) βη-normal form of (t)x and define w ∈Λ as follows :
w =λx u if λx u is not a η-redex, and w = v if u = (v)x with x not free in v ; then
w is βη-normal.
Consider a βη-reduction t βη t ′ ; we show that t ′βηw .
We have (t)xβη (t ′)xβηu. If the βη-reduction from (t ′)x to u takes place inside
t ′, we have u = (v)x and t ′βηv ; thus, x is not free in v (because it is not free in
t ′) and t ′βηw = v . Otherwise, we have t ′βηλx t ′′ and t ′′βηu, so that t ′βηλx u ;
and in case u = (v)x with x not free in v , we get t ′βηλx(v)xβηv . Thus, we have
again t ′βηw in any case, and this shows that t ∈N .

Now, the end of the proof of theorem 3.13 is the same as that of the normaliza-
tion theorem 3.10.

2. System D

In order to study the strongly normalizable terms, we shall deal with the same
type system, but without using the constantΩ. Here it will be called system D.
The definitions below are quite the same as in the previous section, except for
those about saturated sets and interpretations.

Chapter 3. Intersection type systems 51

So the types of system D are formulas built with :
variables X ,Y , . . . (type variables) ;
the connectives → and ∧.

As before, a context Γ is a set of the form x1 : A1, x2 : A2, . . . , xk : Ak in which
x1, x2, . . . , xk are distinct variables of the λ-calculus and A1, A2, . . . , Ak are types
of system D.

Given aλ-term t , a type A, and a context Γ, we define, by means of the following
rules, the notion : t is of type A in the context Γ (or t may be given type A in
the context Γ) ; this will be denoted by Γ `D t : A (or Γ ` t : A if there is no
ambiguity) :

1. If x is a variable, then Γ, x : A `D x : A.
2. If Γ, x : A `D t : B , then Γ`D λx t : A → B .
3. If Γ`D t : A → B and Γ`D u : A, then Γ`D (t)u : B .
4. If Γ`D t : A∧B , then Γ`D t : A and Γ`D t : B .
5. If Γ`D t : A and Γ`D t : B , then Γ`D t : A∧B .

Any expression of the form Γ `D t : A obtained by means of these rules will be
called a typing of t in system D. A term is typable if it may be given some type
in some context.

Clearly, if a term t is typed in the context x1 : A1, . . . , xk : Ak , then the free vari-
ables of t are among x1, . . . , xk (this was not true in system DΩ).

As in DΩ, we have :

Proposition 3.14. If Γ`D t : A and Γ′ ⊃ Γ, then Γ′ `D t : A.
If Γ `D t : A, and if Γ′ ⊂ Γ is the set of those declarations in Γ which concern
variables occurring free in t , then Γ′ `D t : A.

The strong normalization theorem

Consider a fixed subset N ofΛ (in fact, we shall mostly deal with the case where
N is the set of strongly normalizable terms).
A subset X ofΛ is said to be N -saturated if, for all terms t1, . . . , tn ,u :
(u[t/x])t1 . . . tn ∈X ⇒ (λx u)t t1 . . . tn ∈X for every t ∈N .

Proposition 3.15. If Y is an N -saturated subset of Λ, then X → Y is N -
saturated for all X .

Indeed, suppose t ∈N and (u[t/x])t1 . . . tn ∈X →Y .
For any t0 in X , (u[t/x])t1 . . . tn t0 ∈Y , and therefore (λx u)t t1 . . . tn t0 ∈Y , since
Y is N −saturated. Hence (λx u)t t1 . . . tn ∈X →Y .

Q.E.D.

52 Lambda-calculus, types and models

An N -interpretation I is, by definition, a function which associates with each
type variable X an N -saturated subset of Λ, denoted by |X |I (or simply |X | if
there is no ambiguity). Given such a function, we can extend it and associate
with each type A an N -saturated subset of Λ, denoted by |A|I (or simply |A|),
defined as follows, by induction on the length of A :

if A is a type variable, then |A|I is given with the interpretation I ;
if A = B →C , then |A|I = |B |I →|C |I ;
if A = B ∧C , then |A|I = |B |I ∩|C |I .

Lemma 3.16 (Adequacy lemma).
Let I be an N -interpretation such that |F |I ⊂ N for every type F of system D,
and u a λ-term, such that :

x1 : A1, . . . , xk : Ak `D u : A.
If t1 ∈ |A1|I , . . . , tk ∈ |Ak |I then u[t1/x1, . . . , tk /xk] ∈ |A|I .

The proof proceeds by induction on the number of rules used to obtain the
typing of u. Consider the last one :

If it is rule 1, 3, 4 or 5, then we can repeat the proof of the adequacy lemma
(lemma 3.5), for the corresponding rules.

If it is rule 2, then A = B →C and u = λx v ; we can assume that x does not
occur free in t1, . . . , tk and is different from x1, . . . , xk . Moreover :
x : B , x1 : A1, . . . , xk : Ak `D v : C .
By induction hypothesis, v[t/x, t1/x1, . . . , tk /xk] ∈ |C | holds for any t ∈ |B |.
It then follows from our assumptions about x that :
v[t/x, t1/x1, . . . , tk /xk] = v[t1/x1, . . . , tk /xk][t/x].
Since C is N -saturated and t ∈ |B | ⊂N , we have : (λx v[t1/x1, . . . , tk /xk])t ∈ |C |.
Now since t is an arbitrary element of |B |, we obtain :
λx v[t1/x1, . . . , tk /xk] ∈ (|B |→ |C |) = |A|.

Q.E.D.

We now give a method which will provide a set N such that |F |I ⊂N for every
N -interpretation I and every type F of system D.

In this context, an ordered pair (N0,N) of subsets of Λ is said to be adapted if
and only if :

i) N is N -saturated ;
ii) N0 ⊂N ; N0 ⊂ (N →N0) ; (N0 →N) ⊂N .

The difference with the definition page 46 lies in condition (i).

As above, condition (ii) can also be stated this way :
ii’) N0 ⊂ (N →N0) ⊂ (N0 →N) ⊂N .

Lemma 3.17. Let (N0,N) be an adapted pair, and I an N -interpretation such
that, for every type variable X , |X |I is an N -saturated subset of N containing

Chapter 3. Intersection type systems 53

N0. Then, for every type A, |A|I is an N -saturated subset of N which contains
N0.

Proof by induction on A. The result is clear whenever A is a type variable or
A = B ∧C .
If A = B → C , then |A| = |B | → |C |, thus |A| is N -saturated since |C | is (propo-
sition 3.15). Moreover, by induction hypothesis, |B | ⊃N0, and |C | ⊂N . Hence
|B |→ |C | ⊂N0 →N . Now N0 →N ⊂N according to the definition of adapted
pairs ; therefore |B →C | ⊂N .
Similarly, we have |B | ⊂ N , and |C | ⊃ N0. Hence |B → C | ⊃ N → N0 ; since
N →N0 ⊃N0 (definition of adapted pairs), we obtain |B →C | ⊃N0.

Q.E.D.

Now we define two sets N and N0 and show that (N0,N) is an adapted pair :

N is the set of strongly normalizable terms ; in other words, t ∈ N ⇔ there
is no infinite sequence t = t0, t1, . . . , tn , . . . such that ti β0 ti+1 for all i ; therefore
each maximal sequence of this form (called normalization of t) ends with the
normal form of t .

N0 is the set of all terms of the form (x)t1 . . . tn , where x is some variable, and
t1, . . . , tn ∈N .

Proposition 3.18. A strongly normalizable term admits only finitely many nor-
malizations.

(This is an application of the well known König’s lemma). Let t be a term which
admits infinitely many normalizations. Then at least one of the terms obtained
by contracting a redex in t admits infinitely many normalizations. Let t1 be
such a term ; we have t β0 t1. Now the same argument applies to t1 ; so we
can carry on and construct an infinite sequence t = t0, t1, . . . , tn , . . . such that
tnβ0 tn+1 for all n ; therefore t is not strongly normalizable.

Q.E.D.

Proposition 3.19. N is N -saturated.

Let t ∈N , (u[t/x])t1 . . . tn ∈N . We need to prove that (λx u)t t1 . . . tn ∈N .
Let p (resp. q) be the sum of all the lengths of the normalizations of t (resp.
(u[t/x])t1 . . . tn).
The proof is by induction on p, and, for each fixed p, by induction on q .
Consider the terms obtained by contracting a redex in (λx u)t t1 . . . tn . It is suffi-
cient to prove that all of them are in N . The redex on which the contraction is
done may be :
1. The redex (λx u)t ; then the reduced term is (u[t/x])t1 . . . tn , which is in N ;

54 Lambda-calculus, types and models

2. A redex in u, the reduced term being u′, with uβ0 u′ ; we want to prove
that (λx u′)t t1 . . . tn ∈ N . But we have u[t/x]β0 u′[t/x] (proposition 1.20), and
therefore u[t/x]t1 . . . tnβ0 u′[t/x]t1 . . . tn ; thus, the sum of the lengths of the nor-
malizations of (u′[t/x])t1 . . . tn is < q , and the induction hypothesis yields the
expected result ;
3. A redex in ti ; same proof ;
4. A redex in t , the reduced term being t ′ ; then the sum of the lengths of the nor-
malizations of t ′ is p ′ < p. On the other hand, we have u[t/x]βu[t ′/x] (proposi-
tion 1.23), so there is a normalization of (u[t/x])t1 . . . tn which involves the term
(u[t ′/x])t1 . . . tn ; therefore, (u[t ′/x])t1 . . . tn ∈ N . With the induction hypothe-
sis, we conclude that (λx u)t ′t1 . . . tn ∈N .

Q.E.D.

Now we prove that (N0,N) is an adapted pair : condition (i) was checked in
proposition 3.19 ; we have obviously N0 ⊂ N and N0 ⊂ N → N0 ; in order to
prove that N0 →N ⊂N , suppose that u is not strongly normalizable, and let x
be some variable (x ∈N0) ; there exists an infinite sequence u = u0,u1, . . . ,un , . . .
such that ui β0 ui+1 for all i ; then the sequence (u)x = (u0)x, (u1)x, . . . , (un)x, . . .
attests that (u)x is not strongly normalizable.

Theorem 3.20 (Strong normalization theorem). Every term which is typable in
system D is strongly normalizable.

Indeed, let t be a term of type A, in the context x1 : A1, . . . , xk : Ak . Define
an N -interpretation I by taking |X |I = N for every type variable X . We
have xi ∈ N0 by definition of N0, so xi ∈ |Ai | ; by the adequacy lemma, t =
t [x1/x1, . . . , xn/xn] ∈ |A|. Now by lemma 3.17, |A| ⊂N ; thus t ∈N .

Q.E.D.

Remark. Proposition 3.19 provides the following algorithm for checking whether or

not a term is strongly normalizable :

if t is a head normal form, say t = λx1 . . .λxn(x)t1 . . . tk : then do the checking for

t1, . . . , tk ; otherwise, we have t =λx1 . . .λxn(λx u)v t1 . . . tk : then do the checking for v

and for (u[v/x])t1 . . . tk . The algorithm terminates if and only if t is strongly normaliz-

able.

3. Typings for normal terms

We intend to show that head normal forms and normal forms are typable, in a
notable way : a head normal form is typable in system DΩ, with a non-trivial
type ; a normal form is typable in system D (and therefore also in system DΩ,
with a type in which the symbolΩ does not occur).

Chapter 3. Intersection type systems 55

Proposition 3.21. Let t be a term in head normal form. Then t is typable in
system DΩ, with a type of the form U1, . . . ,Un → X (where X is a type variable,
and n ≥ 0).

Indeed, t = λx1 . . .λxn(y)u1 . . .uk . Now, (y)u1 . . .uk is of type X in the context
y : U (where U =Ω,Ω, . . . ,Ω→ X).
Thus t is of type U1, . . . ,Un → X in the context y : U (U1, . . . ,Un may be arbitrarily
chosen, except when y = xi ; in that case, take Ui =U).

Q.E.D.

Lemma 3.22. If x1 : A1, x2 : A2, . . . , xk : Ak ` t : A, then :
x1 : A1 ∧ A′

1, x2 : A2, . . . , xk : Ak ` t : A.

Proof by induction on the number of rules used to obtain :
x1 : A1, x2 : A2,. . . , xk : Ak ` t : A (either rules 1 to 6, page 42 or rules 1 to 5,
page 51). Consider the last one. The only non-trivial case is that of rule 1, when
t = x1. Then we have A = A1. Now, by rule 1, x1 : A1 ∧ A′

1, . . . ` x1 : A1 ∧ A′
1 ;

therefore x1 : A1 ∧ A′
1, . . . ` x1 : A1 (rule 4).

Q.E.D.

Proposition 3.23. Given any two contexts Γ,Γ′, there exists a context Γ′′ such
that, if Γ` t : A and Γ′ ` u : B, then Γ′′ ` t : A, u : B.

Even if it means extending both contexts, we may assume that :
Γ is x1 : A1, . . . , xk : Ak and Γ′ is x1 : B1, . . . , xk : Bk .
Then it suffices to take for Γ′′ the context x1 : A1 ∧B1, . . . , xk : Ak ∧Bk and apply
the previous lemma.

Q.E.D.

The next proposition shows that every normal term is typable in system D.

Proposition 3.24. For every normal term t, there exist a type A and a context Γ
such that Γ `D t : A. Moreover, if t does not start with λ, then, for every type A,
there exists a context Γ such that Γ`D t : A.

Recall that the normal terms are defined by the following conditions :

any variable x is a normal term ;

if t is a normal term, and if x is a variable, then λx t is a normal
term ;

if t ,u are normal terms, and if t does not start with λ, then (t)u is a
normal term.

56 Lambda-calculus, types and models

The proof of the proposition is by induction on the length of t . If t is a variable,
then t is of type A in the context t : A.
If t = λx u, then u is of type A in a context Γ ; we may assume that the declara-
tion x : B occurs in Γ, for some type B (otherwise we add it).
Hence Γ`D t : B → A.
Now suppose that t = (u)v , and u does not start with λ. Let A be any type of
system D. By induction hypothesis, v is of some type B , in some context Γ.
Moreover, there exists a context Γ′ such that Γ′ `D u : B → A. By the previous
proposition, there exists a context Γ′′ such that Γ′′ `D v : B , u : B → A.
Thus Γ′′ `D (u)v : A.

Q.E.D.

Principal typings of a normal term in system D

We have just shown that every normal term t is typable in system D. We shall
improve this result and see that, actually, there is a type which characterizes t
up to η-equivalence.

Recall that, if x1 : A1, . . . , xk : Ak `D t : A, then the free variables of t are among
x1, . . . , xk , and the symbolΩ does not occur in the types A1, . . . , Ak , A.

Let t be a normal term and {x1, . . . , xk } a finite set of variables, containing all the
free variables of t . We shall define a special kind of typings of t in system D, of
the form x1 : A1, . . . , xk : Ak `D t : A, which will be called principal typings of t .
The definition is by induction on t :

If t is a variable xi , we take distinct type variables X1, . . . , Xk . The principal
typings are x1 : X1, . . . , xk : Xk `D xi : Xi .

If t = λx u, let x : A, x1 : A1,. . . , xk : Ak `D u : B be a principal typing of u.
Then x1 : A1,. . . , xk : Ak `D t : A → B is a principal typing of t .

If t does not start with λ, we have t = (x)t1 . . . tn , where x is a variable, and
t1, . . . , tn are normal terms. Let x : Ai , x1 : A1

i , . . . , xk : Ak
i `D ti : Bi be a principal

typing of ti (1 ≤ i ≤ n). Even if it means changing the type variables, we may
assume that, whenever i 6= j , the typings of ti and t j have no type variable in
common. Then we take a new type variable X , and we obtain a principal typing
of t , which is Γ`D t : X , where Γ is the context :

x :
∧n

i=1 Ai ∧ (B1, . . . ,Bn → X), x1 :
∧n

i=1 A1
i , . . . , xk :

∧n
i=1 Ak

i .

This is indeed a typing of t : it follows from lemma 3.22 that
Γ`D ti : Bi and Γ`D x : (B1, . . . ,Bn → X) ;

then it remains to apply rule 3, page 51.

Lemma 3.25. Let x1 : A1, . . . , xk : Ak `D t : A be a principal typing of a normal
term t, and y1, . . . , yl be new variables. Then there exist types B1, . . . ,Bl such that
x1 : A1, . . . , xk : Ak , y1 : B1, . . . , yl : Bl `D t : A is a principal typing of t .

Chapter 3. Intersection type systems 57

Immediate proof by induction on the length of t .
Q.E.D.

Definition. Given any λ-term t , every term u such that t ηu will be called an
η-reduced image of t .

Theorem 3.26.
Let x1 : A1, . . . , xk : Ak `D t : A be a principal typing of a normal term t, and let u
be a typed term in system DΩ, of type A in the context x1 : A1, . . . , xk : Ak . Then
there exists an η-reduced image of t which can be obtained from u by leftmost
β-reduction.

Examples : t =λx(x)x ; the principal type is X ∧ (X → Y) → Y ; any term of that
type can therefore be reduced to t by leftmost β-reduction ;
t = λ f λx(f)x ; the principal type is (X → Y) → (X → Y) ; any term of that type
can be reduced either to t , or to λ f f (which is an η-reduced image of t), by
leftmost β-reduction ;
t =λ f λx(f)(f)x ; the principal type is (X → Y)∧ (Y → Z) → (X → Z).

Lemma 3.27. Suppose t is normal and t η t ′ ; then t ′ is normal. Moreover, if λ is
not the first symbol in t , then neither is it in t ′.

We can assume that t η0 t ′ (t ′ is obtained by one single η-reduction in t).
The proof is by induction on t . If t is a variable, then t = t ′ and the result is
obvious. If t starts with λ, then there are two possibilities :

t =λx u, t ′ =λx u′, and uη0 u′ ; then u′ is normal, thus so is t ′.
t =λx(t ′)x, and x does not occur free in t ′ ; then t ′ needs to be normal, since

t is.
If t does not start with λ, then t = (u)v , and the first symbol in u is not λ. In that
case, either t ′ = (u)v ′ or (u′)v , with uη0 u′ or v η0 v ′. By induction hypothesis,
u′ and v ′ are normal and u′ does not start with λ. Thus t ′ is normal (and does
not start with λ).

Q.E.D.

Lemma 3.28. Consider two terms t , v, and a variable x with no free occurrence
in v. Suppose (v)x ÂÂ t . Then there exists an η-reduced image u of λx t such
that v ÂÂ u.

Recall that t0 ÂÂ t1 means that t1 is obtained from t0 by leftmost β-reduction.
The proof proceeds by induction on the number of steps of leftmost β-reduc-
tion which transform (v)x in t .
1. (v)x = t ; then λx t ηv (definition of η) ; take u = v .
2. (v)x 6= t and v does not start with λ. Then the first leftmost β-reduction in
(v)x is done in the subterm v ; it gives a term (v ′)x, where v ′ is obtained from v

58 Lambda-calculus, types and models

by a leftmost β-reduction. By induction hypothesis, there exists a term u such
that λx t ηu and v ′ ÂÂ u. Thus v ÂÂ u.
3. (v)x 6= t and v starts with λ. Since x is not free in v , we may write v = λx w ;
therefore, a leftmost β-reduction in (v)x produces the term w . Thus it follows
from our assumption that w ÂÂ t . Hence v =λx w ÂÂλx t .

Q.E.D.

Theorem 3.29. Let t be a normal term, and x1 : A1, . . . , xk : Ak `D t : A a princi-
pal typing of t . Then there exists an interpretation I such that :

i) x1 ∈ |A1|I ,. . . , xk ∈ |Ak |I ;
ii) for every term v ∈ |A|I having all its free variables among x1, . . . , xk , there

exists an η-reduced image u of t such that v ÂÂ u.

We first show how theorem 3.26 easily follows from theorem 3.29 : indeed, let v
be any typed term in system DΩ, of type A in the context x1 : A1,. . . , xk : Ak ; by
lemma 3.25, we may assume that the free variables of v are all among x1, . . . , xk .
By the adequacy lemma (lemma 3.5), we have v[a1/x1, . . . , ak /xk] ∈ |A|I when-
ever ai ∈ |Ai |I ; now xi ∈ |Ai |I , and therefore v ∈ |A|I . Then theorem 3.29
ensures the existence of an η-reduced image of t which can be obtained from v
by leftmost β-reduction.

Now we prove theorem 3.29 by induction on the length of t :

If t is a variable, say x1, then the given typing is x1 : X1, . . . , xk : Xk `D x1 : X1,
where the X ′

i s are type variables. The interpretation I can be defined by v ∈
|Xi |I ⇔ v ÂÂ xi .

If t =λx u, then we have a principal typing of u of the form :
x : A, x1 : A1,. . . , xk : Ak `D u : B ; by induction hypothesis, there exists an in-
terpretation I such that x ∈ |A|I , x1 ∈ |A1|I ,. . . , xk ∈ |Ak |I . Now the given
principal typing of t = λx u is x1 : A1,. . . , xk : Ak `D t : A → B . Let v ∈ |A → B |I
be a term with no free variables but x1, . . . , xk (so x does not occur free in v).
Since x ∈ |A|I , (v)x ∈ |B |I . Therefore, by induction hypothesis, (v)x ÂÂ w ,
where w is an η-reduced image of u. By lemma 3.28, there exists a term t ′ such
that v ÂÂ t ′ and λx w η t ′ ; thus v ÂÂ t ′ and λx uη t ′.

If t does not start with λ, then t = (x)t1 . . . tn , where x is some variable and
t1, . . . , tn are normal terms. We also have principal typings for the ti ’s : x : Ai ,
x1 : A1

i ,. . . , xk : Ak
i `D ti : Bi , and interpretations Ii . Observe that the typings of

the t ′i s have no type variable in common, so it is possible to define one single
interpretation I such that for every i , Ii and I have the same restriction to
the type variables occurring in the typing of ti . Now the given principal typing
of t is Γ`D t : X , where Γ is the context :

x :
∧n

i=1 Ai ∧ (B1, . . . ,Bn → X), x1 :
∧n

i=1 A1
i , . . . , xk :

∧n
i=1 Ak

i .

Chapter 3. Intersection type systems 59

By induction hypothesis, x ∈ |Ai |I , thus x ∈ |∧n
i=1 Ai |I ;

similarly, we have x j ∈ |∧n
i=1 A j

i |I .

We define the value of X in the interpretation I by taking :
|X |I = {v ∈Λ; there exist t ′1 ∈ |B1|I , . . . , t ′n ∈ |Bn |I such that v ÂÂ (x)t ′1 . . . t ′n}
(this is indeed a saturated subset ofΛ).
It follows from this definition that x ∈ |B1, . . . ,Bn → X |I . Thus :

x ∈ |∧n
i=1 Ai ∧ (B1, . . . ,Bn → X)|I .

Let v ∈ |X |I , with no free variables but x1, . . . , xk . Then v reduces to (x)t ′1 . . . t ′n
by leftmost β-reduction ; we have t ′i ∈ |Bi |I and therefore, by induction hy-
pothesis, t ′i ÂÂ t ′′i , where t ′′i is an η-reduced image of ti . Hence v ÂÂ (x)t ′′1 . . . t ′′n ,
which is clearly an η-reduced image of t = (x)t1 . . . tn .
So we have shown that the interpretation I satisfies all the required properties
with respect to the given principal typing of t .

Q.E.D.

Corollary 3.30. Let t , t ′ be two normal terms ;
i) Suppose that Γ `DΩ t : A ⇒ Γ `DΩ t ′ : A, for any type A and any context Γ ;
then t η t ′.
ii) Suppose that Γ `DΩ t : A ⇔ Γ `DΩ t ′ : A, for any type A and any context Γ ;
then t = t ′.

i) Take Γ and A such that Γ`DΩ t : A is a principal typing of t . By assumption,
we have Γ`DΩ t ′ : A ; by theorem 3.26, there exists a term u such that t ηu and
t ′ ÂÂ u. Now since t ′ is normal, this implies t ′ = u.
ii) It follows from (i) that t η t ′ and t ′η t ; therefore t = t ′ (indeed, if t η t ′ and
t 6= t ′, then t ′ is strictly shorter than t).

Q.E.D.

References for chapter 3

[Hin78], [Hin86], [Cop78], [Pot80], [Ron84].
(The references are in the bibliography at the end of the book).

60 Lambda-calculus, types and models

Chapter 4

Normalization and standardization

1. Typings for normalizable terms

Notation. In this chapter, the notation ` refers to system D or system DΩ (the
result hold in both cases). Of course, the notation `DΩ refers to system DΩ

only, and the notation `D refers to system D only.

Proposition 4.1.
Let Γ be a context and x1, . . . , xk variables which are not declared in Γ. Suppose
that Γ, x1 : A1, . . . , xk : Ak ` u : B, and Γ` ti : Ai for all i such that xi occurs free
in u (1 ≤ i ≤ k). Then Γ` u[t1/x1, . . . , tk /xk] : B.

Proof by induction on the number of rules used for the typing
Γ, x1 : A1, . . . , xk : Ak ` u : B . Consider the last one :

If it is rule 1, then u is a variable ;
if u = xi , then B = Ai , and u[t1/x1, . . . , tk /xk] = ti , which is of type B in the

context Γ.
if u is a variable and u 6= x1, . . . , xk , then u[t1/x1, . . . , tk /xk] = u, and Γ con-

tains the declaration u : B ; thus Γ` u : B.

If it is rule 2, then u =λy v , B =C → D , and :
Γ, x1 : A1, . . . , xk : Ak , y : C ` v : D .

By induction hypothesis, we have Γ, y : C ` v[t1/x1, . . . , tk /xk] : D . Therefore, by
rule 2, we obtain Γ`λy v[t1/x1, . . . , tk /xk] : C → D , that is to say:
Γ` u[t1/x1, . . . , tk /xk] : C → D .

If it is rule 3, then u = v w and :
Γ, x1 : A1, . . . , xk : Ak ` v : C → B , w : C .

By induction hypothesis :
Γ` v[t1/x1, . . . , tk /xk] : C → B and Γ` w[t1/x1, . . . , tk /xk] : C .

Hence Γ` (v[t1/x1, . . . , tk /xk])w[t1/x1, . . . , tk /xk] : B .

61

62 Lambda-calculus, types and models

In other words Γ` u[t1/x1, . . . , tk /xk] : B .

The other cases are obvious.
Q.E.D.

We will say that a type A is prime if A 6=Ω and A is not a conjunction. So a prime
type is either a type variable or a type of the form A → B .
Any type A is a conjunction of prime types and of Ω (when A is prime, this
conjunction reduces to one single element). These prime types will be called
the prime factors of A. The formal definition, by induction on the length of A,
of the prime factors of A, is as follows :

• if A =Ω, it has no prime factor ;
• if A is a variable, or A = B → C , it has exactly one prime factor, which is A
itself ;
• if A = B ∧C , the prime factors of A are the prime factors of B and the prime
factors of C .

Lemma 4.2. Suppose Γ` t : A, where A is a prime type.
i) If t is some variable x, then x is declared of type A′ in Γ, A being a prime factor
of A′.
ii) If t =λx u, then A = B →C , and Γ, x : B ` u : C .
iii) If t = uv, then Γ` v : B, Γ` u : B → A′, and A is a prime factor of A′.

In case (ii), recall that the notation “ Γ, x : B ” implies that x is not declared in Γ
(otherwise, one should rename the bound variables of λx u).

The given typing of t (with a prime type A in the context Γ) is obtained by the
rules listed on p. 42 or p. 51. Consider the first step when one of these rules
produces a typing Γ` t : A′, where A is a prime factor of A′.
The rule applied at that step is neither rule 4 nor rule 5 :
Indeed, rule 4 requires a previous typing of the form Γ` t : A′∧B , and A would
already be a prime factor of A′∧B . As for rule 5, it requires previous typings of
the form Γ ` t : A′

1, and Γ ` t : A′
2, with A′ = A′

1 ∧ A′
2 ; then A would already be

either a prime factor of A′
1 or of A′

2.

In case (i), the rule applied may only be 1, 4 or 5, since the term obtained is a
variable. But 4 and 5 have just been eliminated ; so it is rule 1, and therefore x
is declared of type A′ in Γ.

In case (ii), the rule applied may only be 2, 4, or 5, since the term obtained is
λx u. So it is rule 2, which implies that A′ is of the form B → C ; now this is a
prime type, thus A′ = A = B → C . Moreover, in this case, rule 2 requires as a
previous typing : Γ, x : B ` u : C .

In case (iii), the rule applied may only be 3, 4 or 5, since the term obtained is
uv . So it is rule 3, and therefore we have : Γ` v : B and Γ` u : B → A′.

Q.E.D.

Chapter 4. Normalization and standardization 63

Proposition 4.3. If Γ` t : A and t β t ′, then Γ` t ′ : A.

We may assume t β0 t ′ (that is to say that t ′ is obtained by contracting one redex
in t). The proposition is proved by induction on the number of rules used to
obtain Γ` t : A. Consider the last one :
It cannot be rule 1, since t β0 t ′ is impossible when t is a variable.
If it is rule 2, then t =λx u, A = B →C , and Γ, x : B ` u : C . In this case, t ′ =λx u′

and uβ0u′. By induction hypothesis, we have Γ, x : B ` u′ : C ;
thus Γ`λx u′ : B →C , that is to say Γ` t ′ : A.
If it is rule 3, then t = uv , Γ ` u : B → A, and Γ ` v : B . Here there are three
possible situations for t ′ :
i) t ′ = u′v , with uβ0 u′ ; by induction hypothesis, we have Γ ` u′ : B → A, and
therefore Γ` t ′ : A.
ii) t ′ = uv ′, with v β0 v ′ ; by induction hypothesis, Γ` v ′ : B ; thus Γ` t ′ : A.
iii) u = λx w and t ′ = w[v/x] ; so we have Γ ` λx w : B → A. Therefore, by
lemma 4.2(ii), Γ, x : B ` w : A ; now, since Γ` v : B , proposition 4.1 proves that
Γ` w[v/x] : A, that is to say Γ` t ′ : A.
If the last rule used is 4, 5 or 6, then the result is obvious.

Q.E.D.

Proposition 4.4. Let Γ be a context and x1, . . . , xk variables which are not de-
clared in Γ. If Γ ` u[t1/x1, . . . , tk /xk] : B, and if t1, . . . , tk are typable in the con-
text Γ, then there exist types A1, . . . , Ak such that Γ ` ti : Ai (1 ≤ i ≤ k) and Γ,
x1 : A1, . . . , xk : Ak ` u : B.

Remarks.
1. If the type system is DΩ, then the condition “ ti is typable in the context Γ ” is
satisfied anyway (Γ` ti :Ω).

2. The necessity of introducing the conjunction symbol ∧, with its specific syntax, ap-

pears in this proposition ; the result is characteristic of this kind of type systems.

First, observe that the proposition is obvious when u = xi . Indeed, in that case,
we have Γ ` ti : B , and, of course, Γ, xi : B ` xi : B . Thus we can take Ai = B ,
and, for j 6= i , take A j as any type satisfying Γ` t j : A j .
Now suppose u 6= x1, . . . , xk . The proof is by induction on the number of rules
used to obtain Γ` u[t1/x1, . . . , tk /xk] : B . Consider the last one.

If it is rule 1, then u[t1/x1, . . . , tk /xk] is a variable y , and Γ contains the dec-
laration y : B . Thus u is also a variable. Now since u 6= x1, . . . , xk , we have
u[t1/x1, . . . , tk /xk] = u, and u = y . Therefore Γ ` u : B ; besides, it has been
assumed that Γ` ti : Ai for appropriate types Ai .

If it is rule 2, then we have B = C → D , u[t1/x1, . . . , tk /xk] = λy u′ and
Γ, y : C ` u′ : D . Since u 6= x1, . . . , xk , we have u = λy v . As usual, we may sup-
pose that y does not occur free in Γ,u, t1, . . . , tk , and y 6= x1, . . . , xk . We have

64 Lambda-calculus, types and models

u′ = v[t1/x1, . . . , tk /xk] and therefore Γ, y : C ` v[t1/x1, . . . , tk /xk] : D . By induc-
tion hypothesis, there exist types Ai such that Γ, y : C ` ti : Ai , and Γ, y : C ,
x1 : A1, . . . , xk : Ak ` v : D . Consequently :
Γ, x1 : A1, . . . , xk : Ak ` u : C → D .
Moreover, since y does not occur in ti , we have Γ` ti : Ai (propositions 3.1, 3.3
and 3.14).

If it is rule 3, then u[t1/x1, . . . , tk /xk] = v ′w ′, and Γ ` v ′ : C → B , Γ ` w ′ : C .
Since u 6= x1, . . . , xk , we have u = v w , and therefore :
v ′ = v[t1/x1, . . . , tk /xk], w ′ = w[t1/x1, . . . , tk /xk]. Consequently :
Γ` v[t1/x1, . . . , tk /xk] : C → B , and Γ` w[t1/x1, . . . , tk /xk] : C .
By induction hypothesis, there exist types A′

i , A′′
i such that :

Γ` ti : A′
i ; Γ` ti : A′′

i ;
Γ, x1 : A′

1, . . . , xk : A′
k ` v : C → B ; Γ, x1 : A′′

1 , . . . , xk : A′′
k ` w : C .

Let Ai = A′
i ∧ A′′

i ; then we have :
Γ, x1 : A1, . . . , xk : Ak ` v : C → B , w : C . Thus :
Γ, x1 : A1, . . . , xk : Ak ` u : B . Moreover, Γ` ti : Ai .

If it is rule 4 or rule 6, then the result is trivial.

If it is rule 5, then :
B = B ′∧B ′′, and Γ` u[t1/x1, . . . , tk /xk] : B ′, Γ` u[t1/x1, . . . , tk /xk] : B ′′.
By induction hypothesis, there exist types A′

i , A′′
i such that :

Γ` ti : A′
i ; Γ` ti : A′′

i ;
Γ, x1 : A′

1, . . . , xk : A′
k ` u : B ′ ; Γ, x1 : A′′

1 , . . . , xk : A′′
k ` u : B ′′.

Let Ai = A′
i ∧ A′′

i ; then we have x1 : A1, . . . , xk : Ak ` u : B ′∧B ′′, that is to say
u : B . Moreover, Γ` ti : Ai .

Q.E.D.

Corollary 4.5.
If Γ` u[t/x] : B and if t is typable in the context Γ, then Γ` (λx u)t : B.

Remark. In system DΩ, the condition about t is satisfied anyway, since Γ` t :Ω.

Proof. By proposition 4.4, we have Γ` t : A and Γ, x : A ` u : B for some type A.
Hence Γ`λx u : A → B (rule 2), and therefore, by rule 3, Γ` (λx u)t : B .

Q.E.D.

Theorem 4.6. Let t and t ′ be two λ-terms such that t ′ is obtained from t by β-
reduction (in other words t β t ′). If Γ`DΩ t ′ : A, then Γ`DΩ t : A.

We may suppose t β0 t ′ (i.e. t ′ is obtained by contracting a redex in t).
The proof is by induction on the length of t and, for each fixed t , by induction
on the length of A.
If A =Ω, the result is trivial.

Chapter 4. Normalization and standardization 65

If A = A1 ∧ A2, then Γ` t ′ : A1 and Γ` t ′ : A2. By induction hypothesis, we have
Γ` t : A1, and Γ` t : A2, therefore Γ` t : A.

So we may now suppose that A is a prime type. There are three possible
cases for t :

i) t is a variable ; this is impossible since t β0 t ′.

ii) t = λx u ; then t ′ = λx u′ and uβ0 u′. Since λx u′ is of prime type A in the
context Γ, by lemma 4.2(ii), we have A = B → C , and Γ, x : B ` u′ : C . Now u is
shorter than t , so by induction hypothesis, Γ, x : B ` u : C . Thus t = λx u is of
type A = B →C in the context Γ.

iii) t = uv ; then we have three possible situations for t ′ :
a) t ′ = uv ′, with v β0 v ′ ; by assumption uv ′ is of prime type A in the context

Γ. By lemma 4.2(iii), we have Γ ` v ′ : B and Γ ` u : B → A′, A being a prime
factor of A′. Now v is shorter than t so, by induction hypothesis, Γ` v : B . Thus
t = uv is of type A′, and hence also of type A, in the context Γ.

b) t ′ = u′v , with uβ0 u′ ; similarly, we have :
Γ` v : B and Γ` u′ : B → A′, A being a prime factor of A′. By induction hypoth-
esis, Γ ` u : B → A′. Thus t = uv is of type A′, and hence also of type A in the
context Γ.

c) u =λx w , (so t = (λx w)v) and t ′ = w[v/x].
The assumption is Γ` w[v/x] : A. By corollary 4.5, and since we are in system
DΩ, we also have Γ` (λx w)v : A.

Q.E.D.

As an immediate consequence of theorem 4.6 and proposition 4.3, we obtain :

Theorem 4.7.
If t is β-equivalent to t ′, and if Γ`DΩ t : A, then Γ`DΩ t ′ : A.

We are then able to give an alternative proof of the uniqueness of the normal
form :

Corollary 4.8. Suppose t and t ′ are normal and t 'β t ′. Then t = t ′.

Apply theorem 4.7 and corollary 3.30.
Q.E.D.

Theorem 4.9. For every λ-term t, the following conditions are equivalent :
i) t is solvable ;
ii) t is β-equivalent to a head normal form ;
iii) the head reduction of t is finite ;
iv) t is typable with a non-trivial type in system DΩ.

66 Lambda-calculus, types and models

Recall that the trivial types are those obtained by the following rules :
Ω is trivial ;
if A is trivial, then so is B → A for every B ;
if A,B are trivial, then so is A∧B .

Lemma 4.10. If λx t (resp. tu) is typable with a non-trivial type in system DΩ,
then the same property holds for t .

We may assume that this type is non-trivial and prime, since any non-trivial
type has a prime factor which is also non-trivial.
Suppose that Γ`λx t : A, where A is a prime non-trivial type. By lemma 4.2(ii),
we get A = B →C and Γ, x : B ` t : C . Moreover, C is non-trivial since A is.
Suppose that Γ` tu : A, where A is a prime non-trivial type.
By lemma 4.2(iii), we get Γ` t : B → A′ and A is a prime factor of A′. It follows
that A′ is non-trivial.

Q.E.D.

We are now able to prove theorem 4.9.

(i) ⇒ (iv) : Let u =λx1 . . .λxk t be the closure of t . Then u is solvable (remark 2,
p. 31, chapter 2), and therefore uv1 . . . vn 'β x, where x is some variable with
no occurrence in u. Since x can obviously be typed with a non-trivial type,
the same holds for uv1 . . . vn (theorem 4.7), and hence also for u, according to
lemma 4.10. Applying this lemma again, we can see that t itself is typable with
a non-trivial type.

(iv) ⇒ (iii) : This is the head normal form theorem 3.7.

(iii) ⇒ (ii) : Obvious.

(ii) ⇒ (i) : We may suppose that t is a closed term (otherwise, take its closure).
We have t 'β λx1 . . .λxk (xi)u1 . . .ul (closed term in head normal form).
Let vi = λy1 . . .λyl x (where x is a new variable), and v j be arbitrary terms for
j 6= i , 1 ≤ j ≤ k. Then (t)v1 . . . vk 'β x, which proves that t is solvable.

Q.E.D.

As an application of theorem 4.9, we now prove the following property of solv-
able terms, which we have used in chapter 2 (namely, lemma 2.12) :

Theorem 4.11. If t 'β λx1 . . .λxk (xi)t1 . . . tn (with 1 ≤ i ≤ k) then, there exist
t ′j 'β t j (1 ≤ j ≤ n) such that, for any u1, . . . ,uk ∈Λ, we have :

(t)u1 . . .uk Âw (ui)t ′′1 . . . t ′′n with t ′′j = t ′j [u1/x1, . . . ,uk /xk].

Recall that Âw denotes weak head reduction (see page 30).

Lemma 4.12. If t Â (x)t1 . . . tn , then t [u/x,u1/x1, . . . ,uk /xk] Âw (u)t ′1 . . . t ′n where
t ′j = t j [u/x,u1/x1, . . . ,uk /xk] for 1 ≤ j ≤ k.

Chapter 4. Normalization and standardization 67

Proof by induction on the length of the head reduction from t to (x)t1 . . . tn .
Note that this reduction is, indeed, a weak head reduction, because the final
term does not begin with a λ.
The result is trivial if this length is 0, i.e. if t = (x)t1 . . . tn . Otherwise, by propo-
sition 2.2, we have t = (λz w)v v1 . . . vp (since t does not begin with a λ). Let
t∗ = (w[v/z])v1 . . . vp ; we can apply the induction hypothesis to t∗, so that
t∗[u/x,u1/x1, . . . ,uk /xk] Âw (u)t ′1 . . . t ′n .
Define v ′ = v[u/x,u1/x1, . . . ,uk /xk], and the same for v1, . . . , vp , w .
Thus, we have :
t∗[u/x,u1/x1, . . . ,uk /xk] = (w[v/z][u/x,u1/x1, . . . ,uk /xk])v ′

1 . . . v ′
p

= (w[u/x,u1/x1, . . . ,uk /xk , v ′/z])v ′
1 . . . v ′

p (by lemma 1.13)
= (w ′[v ′/z])v ′

1 . . . v ′
p (again by lemma 1.13, since z is not free in u,u1, . . . ,uk).

Therefore, we have (w ′[v ′/z])v ′
1 . . . v ′

p Âw (u)t ′1 . . . t ′n .
It follows trivially that (λz w ′)v ′v ′

1 . . . v ′
p Âw (u)t ′1 . . . t ′n . This gives the result, be-

cause t [u/x,u1/x1, . . . ,uk /xk] = (λz w ′)v ′v ′
1 . . . v ′

p .
Q.E.D.

We can now prove theorem 4.11. The hypothesis gives :
(t)x1 . . . xk 'β (xi)t1 . . . tn and the variables x1, . . . , xk are not free in t .
By theorem 4.9, the head reduction of (t)x1 . . . xk is finite and gives a λ-term
which is β-equivalent to (xi)t1 . . . tn . In other words :
(t)x1 . . . xk Â (xi)t ′1 . . . t ′n , with t ′j 'β t j (1 ≤ j ≤ n).
We now use lemma 4.12, with the substitution [u1/x1, . . . ,uk /xk], and we obtain
(t)u1 . . .uk Âw (ui)t ′′1 . . . t ′′n with t ′′j = t ′j [u1/x1, . . . ,uk /xk].

Q.E.D.

Theorem 4.13. For every λ-term t, the following conditions are equivalent :
i) t is normalizable ;
ii) t is normalizable by leftmost β-reduction ;
iii) there exist a type A and a context Γ, both containing no occurrence of the
symbol Ω, such that Γ`DΩ t : A ;
iv) there exist a type A with no positive occurrence of Ω, and a context Γ with no
negative occurrence ofΩ, such that Γ`DΩ t : A.

Clearly, (ii) ⇒ (i) and (iii) ⇒ (iv). We already know that (iv) ⇒ (ii) : this is the
normalization theorem 3.10.
It remains to prove that (i) ⇒ (iii) :
If t is normalizable, then t 'β t ′ for some normal term t ′ ; by proposition 3.24,
there exist a type A and a context Γ, both containing no occurrence of the sym-
bol Ω, such that Γ`D t ′ : A. It then follows from theorem 4.7 that we also have
Γ`DΩ t : A.

Q.E.D.

68 Lambda-calculus, types and models

Theorem 4.14. A λ-term t is normalizable if and only if it admits no infinite
quasi leftmost reduction.

The condition is obviously sufficient. Conversely, if t is normalizable, then, by
theorem 4.13, there exist a type A and a context Γ, both containing no occur-
rence of the symbol Ω, such that Γ `DΩ t : A. Thus, it follows from the quasi
leftmost normalization theorem 3.12 that t admits no infinite quasi leftmost
reduction.

Q.E.D.

With the help of the results above, we can now give yet another proof of the
uniqueness of the normal form (the third, see corollary 4.8) which makes no
use of the Church-Rosser theorem 1.24.

Theorem 4.15. If t is normalizable, then it has only one normal form. In other
words, if t βu, t βu′ and u,u′ are normal, then u = u′.

By theorem 4.13(i)(ii), t is normalizable by leftmost β-reduction. We prove the
theorem by induction on the total length of this reduction (i.e. the total number
of symbols which appear in it).
By proposition 2.2, we have t = λx1 . . .λxk (ξ)t1 . . . tn where ξ is a variable or a
redex.
If ξ is a variable, the leftmost β-reduction of t is exactly the succession of the
leftmost β-reductions of t1, . . . , tn . Therefore, we can apply the induction hy-
pothesis to t1, . . . , tn and we see that t has only one normal form, which is :
λx1 . . .λxk (ξ)t∗1 . . . t∗n where t∗i is the (unique) normal form of ti .
If ξ= (λx u)v is a redex, the first step of leftmost β-reduction in t gives :
t∗∗ =λx1 . . .λxk u[v/x]t1 . . . tn .
By the induction hypothesis, t∗∗ has a unique normal form t∗.
Consider now any β-reduction of t , which gives a normal form. We show that
it gives t∗. Since t = λx1 . . .λxk (λx u)v t1 . . . tn , this reduction begins with some
β-reductions in u, v, t1, . . . , tn , which give :
λx1 . . .λxk (λx u′)v ′t ′1 . . . t ′n , with uβu′, v βv ′, t1β t ′1, . . . , tnβ t ′n .
Then, the head redex is reduced, which gives λx1 . . .λxk u′[v ′/x]t ′1 . . . t ′n .
But β-reduction is a λ-compatible relation, and therefore, we have :
t∗∗βλx1 . . .λxk u′[v ′/x]t ′1 . . . t ′n .
This shows that this β-reduction will finally give a normal form of t∗∗, i.e. t∗.

Q.E.D.

Strong normalization

The next proposition is a generalization of corollary 4.5. It holds for both sys-
tems D and DΩ (in the case of system DΩ, the condition “ t is typable in the
context Γ ” is satisfied anyway, since Γ`DΩ t :Ω).

Chapter 4. Normalization and standardization 69

Proposition 4.16. For all terms u, t , t1, . . . , tn , and any variable x,
if Γ` (u[t/x])t1 . . . tn : B, and if t is typable in the context Γ, then
Γ` (λx u)t t1 . . . tn : B.

The proof is by induction on n and, for each fixed n, by induction on the length
of B . The case n = 0 is precisely corollary 4.5.
If B = B1∧B2, then(u[t/x])t1 . . . tn may be given both type B1 and type B2 in the
context Γ ; by induction hypothesis, the same holds for (λx u)t t1 . . . tn , which is
thus typable in the context Γ, with type B1 ∧B2.
Now we may suppose that B is a prime type and that n ≥ 1.
We have Γ` u[t/x]t1 . . . tn : B ; it follows from lemma 4.2(iii) that tn is of type C ,
and (u[t/x])t1 . . . tn−1 of type C → B ′, in the context Γ, B being a prime factor of
B ′.
By induction hypothesis, we have Γ ` (λx u)t t1 . . . tn−1 : C → B ′. Therefore
(λx u)t t1 . . . tn is of type B ′, and hence also of type B , in the context Γ.

Q.E.D.

Theorem 4.17. Every strongly normalizable term is typable in system D.

Consider a strongly normalizable term τ, and let N (τ) be the sum of the lengths
of all possible normalizations of τ (proposition 3.18 ensures the correctness of
this definition). The proof is by induction on N (τ). By proposition 2.2, we have :
τ=λx1 . . .λxm(v)t1 . . . tn , where v is either a variable or a redex.
If v is a variable, then t1, . . . , tn are strongly normalizable and we have :
N (τ) > N (t1), . . . , N (tn). Thus t1, . . . , tn are typable, with types A1, . . . , An , respec-
tively, in system D ; we may suppose that all these typings are in the same con-
text Γ (proposition 3.23) and that Γ contains a declaration for each of the vari-
ables x1, . . . , xm , v , say x1 : U1, . . . , xm : Um , v : V (with V =Ui whenever v = xi).
Let X be a new type variable, V ′ = V ∧ (A1, . . . , An → X), and Γ′ the context ob-
tained by replacing in Γ the declaration of v with : v : V ′.
Then we have Γ′ `D ti : Ai (1 ≤ i ≤ n), and thus Γ′ `D (v)t1 . . . tn : X ;
hence τ may be given :
either type U1, . . . ,Um → X (if v 6= x1, . . . , xm)
or type U1, . . . ,Ui−1,V ′,Ui+1, . . . ,Um → X (if v = xi).
If v = (λx u)t (v is a redex), then τ=λx1 . . .λxm(λx u)t t1 . . . tn ;
let τ′ = u[t/x]t1 . . . tn . Clearly, N (τ) > N (τ′) (every normalization of τ′ is strictly
included in a normalization of τ) ; it is also clear that N (τ) > N (t) (since t is
a subterm of τ). Thus, by induction hypothesis, τ′ and t are typable in sys-
tem D ; moreover, proposition 3.23 allows us to assume that they are typable
in the same context. It then follows from proposition 4.16 that (λx u)t t1 . . . tn

is typable, with some type B , in some context Γ : even if it means extending it,

70 Lambda-calculus, types and models

we may assume thatΓ contains a declaration for each of the variables x1, . . . , xm ,
say x1 : U1, . . . , xm : Um . Finally, τ is seen to be typable, with type U1, . . . ,Um → B .

Q.E.D.

Corollary 4.18. A term is strongly normalizable if and only if it is typable in
system D.

Indeed, by the strong normalization theorem 3.20, every term which is typable
in system D is strongly normalizable.

Remarks.
1. Theorem 4.6 does not hold any more if we replace system DΩ with system D. For
instance, the term t = λy(λx y)(y)y is β-equivalent to λy y , which is of type Y → Y ,
where Y is any type variable. Now t may not be given type Y → Y :
Indeed, if `D t : Y → Y , then, by lemma 4.2(ii), we have :
y : Y `D (λx y)(y)y : Y ; therefore, by lemma 4.2(iii), y : Y `D (y)y : A for some type
A ; hence y : Y `D y : B → C (by lemma 4.2(iii)) ; but this is in contradiction with
lemma 4.2(i).
Nevertheless, t is typable ; for example, it may be given type
Y ∧ (Y → X) → Y ∧ (Y → X).
There is an analogue of theorem 4.6 for system D, which uses βI -reduction instead of
β-reduction (see below theorem 4.21).

2. A normalizable term, of which every proper subterm is strongly normalizable, need

not be strongly normalizable. For instance, the term :

t = (λx(λy z)(x)δ)δ, where δ = λx xx, is normalizable (it is β-equivalent to z), but not

strongly normalizable (t reduces to (λy z)(δ)δ, and (δ)δ is not normalizable).

βI -reduction

A λ-term of the form (λx t)u will be called a I -redex if x is a free variable of t .
Reducing a I -redex will be called a step of βI -reduction. A finite sequence of
such steps will be called a βI -reduction. The notation t βI t ′ means that t ′ is
obtained by βI -reduction from t .
We will now prove the following result (Barendregt’s conservation theorem) :

Theorem 4.19. If t ′ is strongly normalizable and if t βI t ′, then t is strongly
normalizable.

Lemma 4.20. If Γ`D u[v/x] : A and if x is free in u, then v is typable, in system
D, in the context Γ.

We first observe that the result is trivial if u is a variable : indeed, this variable
must be x. Therefore, from now on, we assume that u is not a variable.

Chapter 4. Normalization and standardization 71

We prove the lemma by induction on the length of the proof of the typing :
Γ`D u[v/x]:A in system D. Consider the last rule used in this proof (page 51).
If it is rule 1, u[v/x] is a variable, thus u must also be a variable.
If it is rule 2, then u[v/x] =λy w and we have A = B →C and Γ, y :B ` w :C . Now,
u is not an application (u[v/x] would also be an application) and we assumed
it is not a variable. Therefore, we have u =λy u′ and w = u′[v/x].
Thus Γ, y :B ` u′[v/x]:C is the previous step of the proof. Now, the variable x
is free in u′, since it is free in u. By the induction hypothesis, we see that v is
typable, in system D, in the context Γ, y :B . But y is not free in v and it follows
from proposition 3.14 that v is typable in the context Γ.
If it is rule 3, then u[v/x] = w0w1 and we have :
Γ` w0:B → A, Γ` w1:B . Now, u is not an abstraction (u[v/x] would also be an
abstraction) and we assumed it is not a variable. Therefore, we have u = u0u1

and w0 = u0[v/x], w1 = u1[v/x]. Thus, some previous steps of the proof are
Γ ` u0[v/x]:B → A, Γ ` u1[v/x]:B . But x is free in u = u0u1, and therefore, it
is free in u0 or in u1. We may thus apply the induction hypothesis, and we see
that v is typable, in system D, in the context Γ.
The case of the rules 4 and 5 is trivial.

Q.E.D.

Theorem 4.21.
Let t and t ′ be two λ-terms such that t βI t ′. If Γ`D t ′ : A, then Γ`D t : A.

Remark. Thus, the typings in system D are preserved by inverse βI -reduction. This

theorem is close to theorem 4.6, which says that, in system DΩ, the typings are pre-

served by inverse β-reduction.

We may assume that t ′ is obtained from t by one step of βI -reduction.
The proof is by induction on the length of t and, for each fixed t , by induction
on the length of A. It is exactly the same as for theorem 4.6, except for :

• the very first step : of course, the case A =Ω is not considered.

• the very last step (iii)(c), which is managed as follows :

c) u = λx w , (so t = (λx w)v) and t ′ = w[v/x]. Since we have a step of βI -
reduction, the variable x is free in w .
Now, the assumption is : Γ `D w[v/x] : A. By lemma 4.20, v is typable in the
context Γ, in system D. By corollary 4.5, we also have Γ`D (λx w)v : A.

Q.E.D.

We can now prove theorem 4.19 : if t ′ is strongly normalizable, it is typable in
system D (corollary 4.18). By theorem 4.21, t is also typable in system D ; thus,
by corollary 4.18, t is strongly normalizable.

Q.E.D.

72 Lambda-calculus, types and models

Two redexes (λx t)u and (λx ′ t ′)u′ will be called equivalent if :
u = u′ and t [u/x] = t ′[u′/x ′] (they have identical arguments and reducts).
A redex which is equivalent to a I -redex will be called a I ′-redex.
For example, (λx uv)u is always a I ′-redex, even when x is not free in u, v . In-
deed, in this case, it is equivalent to the I -redex (λx xv)u.
We shall write t βI ′ t ′ if t ′ is obtained from t by a sequence of reductions of I ′-
redexes.

We can strengthen theorems 4.21 and 4.19 in the following way, with exactly the
same proof :

Theorem 4.22. Let t and t ′ be two λ-terms such that t βI ′ t ′. If Γ`D t ′ : A, then
Γ`D t : A.

Theorem 4.23. If t ′ is strongly normalizable and if t βI ′ t ′, then t is strongly
normalizable.

The λI -calculus

The terms of the λI -calculus form a subsetΛI ofΛ, which is defined as follows :

• If x is a variable, then x ∈ΛI .
• If t ,u ∈ΛI , then tu ∈ΛI .
• If t ∈ΛI and x is a variable which appears free in t , then λx t ∈ΛI .

The typical example of a closed λ-term which is not inΛI is λxλy x.

If t ∈ ΛI , then every subterm of t is in ΛI (trivial proof, by induction on the
length of t).

Proposition 4.24. If t , t1, . . . , tn ∈ΛI , then t [t1/x1, . . . , tn/xn] ∈ΛI .

Proof by induction on the length of t : the result is immediate if t is a variable,
or if t = uv , with u, v ∈ΛI . If t =λx u, then :
t [t1/x1, . . . , tn/xn] =λx u[t1/x1, . . . , tn/xn] (we suppose x 6= x1, . . . , xn).
By hypothesis, there is a free occurrence of x in u and therefore, there is also one
in u[t1/x1, . . . , tn/xn]. By induction hypothesis, we have u[t1/x1, . . . , tn/xn] ∈ΛI .
It follows that λx u[t1/x1, . . . , tn/xn] ∈ΛI .

Q.E.D.

Proposition 4.25. ΛI is closed by β-reduction. More precisely, if t ∈ΛI and t β t ′,
then t ′ ∈ΛI and t ′ has the same free variables as t .

Chapter 4. Normalization and standardization 73

Suppose t ∈ΛI and t β0 t ′ ; we show the result by induction on the length of t ;
observe that t cannot be a variable.
If t =λx u, then t ′ =λx u′ with uβ0 u′. Since u ∈ΛI and x is a free variable of u,
by induction hypothesis, u′ has the same properties. It follows that t ′ ∈ΛI and
t ′ has the same free variables as t .
If t = uv , we have three possibilities for t ′ :

t ′ = u′v with uβ0 u′ ; by induction hypothesis, we have u′ ∈ ΛI and u′ has
the same free variables as u. Hence, t ′ ∈ ΛI and t ′ has the same free variables
as t .

t ′ = uv ′ with v β0 v ′ ; same proof.
u = λx w (so that t = (λx w)v), and t ′ = w[v/x] ; we have v, w ∈ ΛI and

therefore, by proposition 4.24, we have t ′ ∈ΛI . Now, let Fv (resp. Fw) the set of
free variables of v (resp. w) ; thus, we have x ∈ Fw . The set of free variables of t
is Fv ∪ (Fw \ {x}). The set of free variables of t ′ is the same, because v is really a
subterm of t ′ = w[v/x].

Q.E.D.

Theorem 4.26. If t ∈ΛI is normalizable, then t is strongly normalizable.

We prove first the following lemma on strong normalization :

Lemma 4.27. Let t1, . . . , tn ,u, v ∈Λ be such that u[v/x]t1 . . . tn and v are strongly
normalizable. Then (λx u)v t1 . . . tn is strongly normalizable.

By corollary 4.18, we know that u[v/x]t1 . . . tn and v are typable in system D. By
proposition 3.23, they are typable in the same context. Then, we apply propo-
sition 4.16, which shows that (λx u)v t1 . . . tn is typable in system D. Applying
again corollary 4.18, we see that (λx u)v t1 . . . tn is strongly normalizable.

We can give a more direct proof, which does not use types. Suppose that there
exists an infinite sequence of β-reductions for the λ-term (λx u)v t1 . . . tn . There
are two possible cases :

• Each β-reduction takes place in one of the terms u, v, t1, . . . , tn .
Thus, there is an infinite sequence of β-reductions in one of these terms. But it
cannot be v , which is strongly normalizable ; and it can be neither u, nor t1, . . . ,
nor tn , because u[v/x]t1 . . . tn is strongly normalizable.

• The sequence begins with a finite number of β-reductions in the terms
u, v, t1, . . . , tn and then, the head redex is reduced. This gives (λx u′)v ′t ′1 . . . t ′n
with uβu′, v βv ′, t1β t ′1, . . . , tnβ t ′n and then u′[v ′/x]t ′1 . . . t ′n . Therefore, this term
is not strongly normalizable. But β-reduction is a λ-compatible relation, and it
follows that u[v/x]t1 . . . tn β u′[v ′/x]t ′1 . . . t ′n . Therefore, u[v/x]t1 . . . tn is also not
strongly normalizable, which is a contradiction.

Q.E.D.

74 Lambda-calculus, types and models

Now, we prove theorem 4.26 : by theorem 4.13, we know that t is normalizable
by leftmost reduction. We prove the result by induction on the total length of
this leftmost reduction (i.e. the sum of the lengths of the λ-terms which appear
in it).
By proposition 2.2, there are two possibilities for t :

• t =λx1 . . .λxm(y)t1 . . . tn where y is a variable.
Then, we have t1, . . . , tn ∈ ΛI and their leftmost reductions are stricly shorter
than the one of t . By induction hypothesis, they are all strongly normalizable,
and so is t .

• t =λx1 . . .λxm(λx u)v t1 . . . tn ;
we have to show that (λx u)v t1 . . . tn is strongly normalizable. By lemma 4.27,
it suffices to show that u[v/x]t1 . . . tn and v are strongly normalizable. Now,
u[v/x]t1 . . . tn is obtained by β-reduction from (λx u)v t1 . . . tn ∈ΛI .
Thus, u[v/x]t1 . . . tn ∈ΛI (proposition 4.25).
It is clear that its leftmost reduction is strictly shorter than the one of :
t =λx1 . . .λxm(λx u)v t1 . . . tn .
Thus, by induction hypothesis, we see that u[v/x]t1 . . . tn is strongly normaliz-
able. But λx u ∈ΛI , because it is a subterm of t ; thus, x is a free variable of u.
It follows that v is a subterm of u[v/x]t1 . . . tn , and therefore v is also strongly
normalizable.

Q.E.D.

There is a short proof of theorem 4.26, by means of the above results on βI -
reduction : suppose that t ∈ ΛI is normalizable and let t ′ be its normal form.
Thus, t ′ is typable in sytem D (proposition 3.24). But we have t βI t ′, since the
reduction of t takes place in ΛI . Therefore, by theorem 4.21, t is typable in
sytem D and thus, t is strongly normalizable (theorem 3.20).

Q.E.D.

βη-reduction

Let X1, . . . , Xk be distinct type variables, A a type, Γ a context, and U1, . . .Uk arbi-
trary types. The type (resp. the context) obtained by replacing, in A (resp. in Γ),
each occurrence of Xi by Ui (1 ≤ i ≤ k) will be denoted by : A[U1/X1, . . . ,Uk /Xk]
(resp. Γ[U1/X1, . . . ,Uk /Xk]).

The next two propositions hold for both systems D and DΩ.

Proposition 4.28.
If Γ` t : A, then Γ[U1/X1, . . . ,Uk /Xk] ` t : A[U1/X1, . . . ,Uk /Xk].

Immediate, by induction on the number of rules used to obtain Γ` t : A.
Q.E.D.

Chapter 4. Normalization and standardization 75

Proposition 4.29. Suppose t η0 t ′ and Γ ` t ′ : A, and let X1, . . . , Xk be the type
variables which occur either in Γ or in A.Then :
Γ[U1/X1, . . . ,Uk /Xk] ` t : A[U1/X1, . . . ,Uk /Xk] for all types U1, . . . ,Uk of the form
V →W .

Recall that t η0 t ′ means that t ′ is obtained from t by one η-reduction.

The proof of the proposition is by induction on the length of t and, for a given
t , by induction on the length of A.
If A =Ω, the result is trivial.
If A = A1 ∧ A2, then Γ ` t ′ : A1, Γ ` t ′ : A2. By induction hypothesis, we have
Γ[U1/X1, . . . ,Uk /Xk] ` t : Ai [U1/X1, . . . ,Uk /Xk](i = 1,2) ; therefore, by rule 5,
Γ[U1/X1, . . . ,Uk /Xk] ` t : A[U1/X1, . . . ,Uk /Xk].

So we now may suppose that A is a prime type. The three possible situations
for t are :

i) t is a variable : this is impossible since t η0 t ′.
ii) t =λx u ; then we have two possible cases for t ′ :

a) t ′ = λx u′, with uη0 u′. Since Γ ` t ′ : A (prime type), it follows from
lemma 4.2(ii) that A = B →C , and Γ, x : B ` u′ : C . By induction hypothesis :
Γ[U1/X1, . . . ,Uk /Xk], x : B [U1/X1, . . . ,Uk /Xk] ` u : C [U1/X1, . . . ,Uk /Xk] for all
types Ui of the form V →W . Thus t is of type :
B [U1/X1, . . . ,Uk /Xk] →C [U1/X1, . . . ,Uk /Xk] = A[U1/X1, . . . ,Uk /Xk]
in the context Γ[U1/X1, . . . ,Uk /Xk].

b) t =λx t ′x, and x does not occur free in t ′. By assumption, we have :
Γ` t ′ : A, A being a prime type. According to the definition of prime types, we
have two cases :

If A = B →C , then, x : B ` t ′x : C ; hence Γ` λx t ′x : B →C , in other words
Γ` t : A ; by proposition 4.28, we have :
Γ[U1/X1, . . . ,Uk /Xk] ` t : A[U1/X1, . . . ,Uk /Xk].

If A is a type variable Xi , then Γ ` t ′ : Xi ; therefore, by proposition 4.28,
we have Γ[U1/X1, . . . ,Uk /Xk] ` t ′ : Ui . Now, by assumption, Ui = V → W .
It then follows that Γ[U1/X1, . . . ,Uk /Xk], x : V ` t ′x : W and, consequently,
Γ[U1/X1, . . . ,Uk /Xk] `λx t ′x : Ui , that is to say
Γ[U1/X1, . . . ,Uk /Xk] ` t : Ui .

iii) t = uv ; again, we have two possible cases for t ′ :
a) t ′ = uv ′, with v η0 v ′ ; since uv ′ is of prime type A in the context Γ, it

follows from lemma 4.2(iii) that v ′ is of type B and u of type B → A′ in the con-
text Γ, A being a prime factor of A′. By induction hypothesis :
Γ[U1/X1, . . . ,Uk /Xk] ` v : B [U1/X1, . . . ,Uk /Xk]
for all types Ui of the form V →W .
By proposition 4.28, we have :

76 Lambda-calculus, types and models

Γ[U1/X1, . . . ,Uk /Xk] ` u : B [U1/X1, . . . ,Uk /Xk] → A′[U1/X1, . . . ,Uk /Xk]. Thus
t = uv is of type A′[U1/X1, . . . ,Uk /Xk] in the context
Γ[U1/X1, . . . ,Uk /Xk], and hence is also of type A[U1/X1, . . . ,Uk /Xk].

b) t = u′v , with uη0 u′ ; the proof is the same as in case (a).
Q.E.D.

Theorem 4.30. A λ-term is βη-normalizable if and only if it is normalizable.

Necessity : let t be a βη-normalizable term ; we prove that t is normalizable, by
induction on the length of its βη-normalization. Consider the first βη-reduc-
tion done in t : it produces a term t ′, which is normalizable (induction hypoth-
esis). If it is a β-reduction, then t β0 t ′, thus t is also normalizable. If it is an
η-reduction, then t η0 t ′ ; since t ′ is normalizable (induction hypothesis), we
have Γ `DΩ t ′ : A, where both A and Γ contain no occurrence of the symbol Ω
(theorem 4.13). By proposition 4.29, there exist a type A′ and a context Γ′, with
no occurrence of Ω, such that Γ′ `DΩ t : A′ ; it then follows from theorem 4.13
that t is normalizable.
Sufficiency : if t is normalizable, then t β t ′ for some normal term t ′ ; consider
a maximal sequence of η-reductions starting with t ′ (such a sequence needs
to be finite, since the length of terms strictly decreases under η-reduction) : it
produces a term which is still normal (lemma 3.27) and contains no η-redex, in
other words a βη-normal term.

Q.E.D.

We can now give an alternative proof of the uniqueness of theβη-normal form :

Theorem 4.31. If t ∈ Λ is βη-normalizable, then it has only one βη-normal
form. More precisely, there exists a βη-normal term u such that, if t βη t ′ for
some t ′, then t ′βηu.

Remark. This is exactly the Church-Rosser property for t .

By theorem 4.30, t is normalizable ; by theorem 4.13(i)(iii), there exist a type A
and a context Γ, both containing no occurrence of the symbol Ω, such that
Γ`DΩ t : A. Then the result follows immediately from theorem 3.13.

Q.E.D.

Theorem 4.32. A λ-term t is solvable if, and only if there exists a head normal
form u such that t βηu.

If t is solvable, then t βu for some head normal form u and, therefore, t βηu.
Conversely, suppose that t βηu, u being a head normal form. Then, there exists
a sequence t0, t1, . . . , tn such that t0 = t , tn is solvable and, for each i = 0, . . . ,n
we have ti β ti+1 or ti η0 ti+1.

Chapter 4. Normalization and standardization 77

We show that t is solvable by induction on n. This is trivial if n = 0. If n ≥ 1,
then t1 is solvable, by induction hypothesis and there are two cases :

i) t0β t1 ; then t = t0 is solvable.
ii) t0η0 t1 ; since t1 is solvable, by theorem 4.9(i)(iv), it is typable with a non-

trivial type in system DΩ. By proposition 4.29, t = t0 has the same property ; it
is therefore solvable, again by theorem 4.9(i)(iv).

Q.E.D.

2. The finite developments theorem

Remark. Until the end of this chapter, we shall only use the Church-Rosser theo-

rem 1.24 and the strong normalization theorem 3.20.

Let t ∈ Λ ; recall that a redex in t is, by definition, an occurrence, in t , of a
subterm of the form (λx u)v . In other words, a redex is defined by a subterm of
the form (λx u)v , together with its position in t . So we clearly have the following
inductive definition for the redexes of a term t :

if t is a variable, then there is no redex in t ;
if t =λx u, the redexes in t are those in u ;
if t = uv , the redexes in t are those in u, those in v , and, if u starts with λ, t

itself.

We add to the λ-calculus a new variable, denoted by c, and we define Λ(c) as
the least set of terms satisfying the following rules :

1. If x is a variable 6= c, then x ∈Λ(c) ;
2. If x is a variable 6= c, and if t ∈Λ(c), then λx t ∈Λ(c) ;
3. If t ,u ∈Λ(c), then (c)tu ∈Λ(c) ;
4. If t ,u ∈Λ(c), and if t starts with λ, then tu ∈Λ(c).

Lemma 4.33. If t ,u ∈Λ(c), and if x is a variable 6= c, then u[t/x] ∈Λ(c).

The proof is by induction on u. The result is obvious whenever u is a variable
6= c, or u = λy v , or u = (c)v w . If u = (λy v)w , then u[t/x] = (λy v[t/x])w[t/x].
By induction hypothesis, v[t/x], w[t/x] ∈Λ(c), and therefore u[t/x] ∈Λ(c).

Q.E.D.

Lemma 4.34. If t ∈Λ(c) and t β0 t ′, then t ′ ∈Λ(c).

By induction on t . If t =λx u, then t ′ =λx u′, with uβ0 u′ ; then the conclusion
follows from the induction hypothesis.
If t = (c)uv , then t ′ = (c)u′v or (c)uv ′, with uβ0 u′ or v β0 v ′. By induction hy-
pothesis, u′, v ′ ∈Λ(c), and therefore t ′ ∈Λ(c).
If t = (λx u)v , there are three possibilities for t ′ :

78 Lambda-calculus, types and models

t ′ = (λx u′)v , or (λx u)v ′, with uβ0 u′ or v β0 v ′. By induction hypothesis,
u′, v ′ ∈Λ(c), and then t ′ ∈Λ(c).

t ′ = u[v/x] ; then t ′ ∈Λ(c) by lemma 4.33.
Q.E.D.

We see that Λ(c) is invariant under β-reduction (if t ∈ Λ(c) and t β t ′, then
t ′ ∈Λ(c)).

Lemma 4.35. Let t ∈ Λ(c), and Γ be any context in which all the variables of t ,
except c, are declared. Then there exist two types C ,T of system D such that Γ,
c : C `D t : T .

Proof by induction on t : this is obvious when t is a variable 6= c.
If t = λx u, we can assume that the variable x is not declared in Γ (otherwise,
we change the name of this variable in t). By induction hypothesis, we have
Γ, x : A, c : C ` u : U , and therefore Γ, c : C `λx u : A →U .
If t = (c)uv , with u, v ∈Λ(c), then, by induction hypothesis :
Γ, c : C ` u : U , and Γ, c : C ′ ` v : V . Hence :
Γ, c : C ∧C ′∧ (U ,V →W) ` (c)uv : W .
If t = (λx u)v , with u, v ∈Λ(c), we may assume that the variable x is not declared
in Γ (otherwise, we change the name of this variable in λx u). By induction
hypothesis :
Γ, x : A, c : C ` u : U , and Γ, c : C ′ ` v : V ; but here A is an arbitrary type, so we
can take A =V . Then Γ, c : C `λx u : V →U , and therefore :
Γ, c : C ∧C ′ ` (λx u)v : U .

Q.E.D.

Corollary 4.36. Every term inΛ(c) is strongly normalizable.

This is immediate, according to the strong normalization theorem 3.20.
Q.E.D.

We define a mapping from Λ(c) onto Λ, denoted by T 7→ |T |, by induction on
T :

if T is a variable 6= c, then |T | = T ;
if T =λx U , with U ∈Λ(c), then |T | =λx|U | ;
if T = (c)UV , with U ,V ∈Λ(c), then |T | = (|U |)|V | ;
if T = (λx U)V , with U ,V ∈Λ(c), then |T | = (λx|U |)|V | ;

Roughly speaking, one obtains |T | by “ forgetting ” c in T .

Let T ∈Λ(c) and t = |T | ; there is an obvious way of associating, with each redex
R in T , a redex r = |R| in t , called the image of R. Distinct redexes in T have dis-
tinct images in t ; this property, like the next ones, is immediate, by induction
on T :

Chapter 4. Normalization and standardization 79

If T,U ∈Λ(c), and |T | = t , |U | = u, then |T [U /x]| = t [u/x].
Let T ∈ Λ(c), R be a redex in T , T ′ the term obtained by contracting R in T ,
t = |T |, r = |R|, and t ′ = |T ′| ; then t ′ is the term obtained by contracting the
redex r in t .

Lemma 4.37. Let t ∈Λ and R be a set of redexes of t . Then there exists a unique
term T ∈Λ(c) such that t = |T | and R is the set of all images of the redexes of T .

This term T will be called the representative of (t ,R). So we have a one-to-one
correspondence betweenΛ(c) and the set of ordered pairs (t ,R) such that t ∈Λ
and R is a set of redexes of t .

We define T by induction on t . If t is a variable, then R = ; ; the only way
of obtaining a term T ∈ Λ(c) such that |T | is a variable is to use rule 1 in the
inductive definition ofΛ(c) given above. Thus T = t .
If t = λx u, then R is a set of redexes of u. Only rule 2 can produce a term T
such that |T | starts with λ. So T = λx U , and U needs to be the representative
of (u,R).
If t = t1t2, let R1 (resp. R2) be the subset of R consisting of those redexes which
occur in t1 (resp. t2). T is obtained by rule 3 or rule 4, thus either T = (c)T1T2,
or T = T1T2, Ti being the representative of (ti ,Ri).
If t itself is not a member of R, then T cannot be obtained by rule 4 ; otherwise
T would be a redex, and its image t would be in R. Thus T = (c)T1T2.
If t is a member of R, then T needs to be a redex, so T cannot be obtained by
rule 3, and therefore T = T1T2.

Q.E.D.

Intuitively, the representative of (t ,R) is obtained by using the variable c to
“ destroy ” those redexes of t which are not in R, and to “ neutralize ” the
applications in such a way that they cannot be transformed in redexes via β-
reduction.

Let t ∈ Λ, R be a set of redexes of t , r0 a redex of t , and t ′ the term obtained
by contracting r0 in t . We define a set R′ of redexes of t ′ called residues of R

relative to r0 : let S =R∪ {r0}, T be the representative of (t ,S), R0 the redex of
T of which r0 is the image, and T ′ the term obtained by contracting R0 in T ; so
we have t ′ = |T ′|. Then R′ is, by definition, the set of images in t ′ of the redexes
of T ′.
Remark. The set of residues of R relative to r0 does not only depend on t and t ′, but

also on the redex r0. For example, take t = (λx x)(λx x)x, t ′ = (λx x)x, r0 = t and r1 = t ′ :

clearly, t ′ is obtained by contracting either the redex r0 or the redex r1 in t ; but {r0} has

a residue relative to r1, while it has no residue relative to r0.

Let t ∈ Λ ; a reduction B starting with t consists, by definition, of a finite se-
quence of terms (t0 = t), t1, . . . , tn , together with a sequence of redexes :

80 Lambda-calculus, types and models

r0,r1, . . . ,rn−1, such that each ri is a redex of ti , and ti+1 is obtained by contract-
ing the redex ri in the term ti (0 ≤ i < n). The term tn is called the result of the
reduction B . We shall also say that the reduction B leads from t to tn .
Now let R be a set of redexes of t . We define the set of residues of R in tn , relative
to the reduction B , by induction on n : we just gave the definition for the case
n = 1 ; suppose n > 1, and let Rn−1 be the set of residues of R in tn−1 relative
to B ; then the residues of R in tn relative to B are the residues of Rn−1 in tn

relative to rn−1.

Let t ∈ Λ and R be a set of redexes of t . A development of (t ,R) is, by defini-
tion, a reduction D starting with t such that its redexes r0,r1, . . . ,rn−1 satisfy the
following conditions : r0 ∈ R, and ri is a residue of R relative to the reduction
r0,r1, . . . ,ri−1(0 < i < n). The development is said to be complete provided that
R has no residue in tn relative to the reduction D .

The main purpose of the next theorem is to prove that the lengths of the devel-
opments of a set of redexes are bounded.

Theorem 4.38 (Finite developments theorem). Let t ∈ Λ, and R be a set of re-
dexes of t . Then :
i) There exists an integer N such that the length of every development of (t ,R) is
≤ N .
ii) Every development of (t ,R) can be extended to a complete development.
iii) All complete developments of (t ,R) have the same result.

Let D be a development of (t ,R), (t0 = t), t1, . . . , tn its sequence of terms,
r0,r1, . . . ,rn−1 its sequence of redexes, Ri the set of residues of R in ti relative
to the β-reduction r0, . . . ,ri−1(1 ≤ i ≤ n), and R0 =R.
We have r0 ∈R0, each ti (1 ≤ i ≤ n) is obtained by contracting the redex ri−1 in
ti−1, and ri ∈Ri . Therefore Ri is the set of residues of Ri−1 relative to ri−1.
Let T ∈ Λ(c) be the representative of (t ,R) and Ti ∈ Λ(c) (0 ≤ i ≤ n) the repre-
sentative of (ti ,Ri) (T0 = T). Since ri ∈Ri , ri is the image of a redex Ri in Ti . Let
Ui+1 ∈Λ(c) (0 ≤ i ≤ n−1) be the term obtained by contracting the redex Ri in Ti .
Then |Ui+1| = ti+1 (the term obtained by contracting the redex ri in ti). The set
of all images of the redexes of Ui+1 is therefore the set of residues of Ri in ti+1

relative to ri (by definition of this set of residues), that is to say Ri+1. Conse-
quently, Ui+1 is the representative of (ti+1,Ri+1), and therefore Ui+1 = Ti+1. So
we have proved that the sequence of terms (T0 = T),T1, . . . ,Tn and the sequence
of redexes R0,R1, . . . ,Rn−1 form a reduction B(D) of T .
Clearly, the mapping D → B(D) is a one-to-one correspondence between the
developments of (t ,R) and the reductions of its representative T . In particular,
the length of any development of (t ,R) is that of some reduction of T . Thus it
is ≤ N , where N is the maximum of the lengths of the reductions of T (T ∈Λ(c)

Chapter 4. Normalization and standardization 81

is strongly normalizable). Moreover, every reduction of T can be extended to a
reduction which reaches the normal form of T . Because of the correspondence
defined above, this implies that every development of (t ,R) can be extended to
a development in which the last term contains no residue of R, in other words
to a complete development.
Finally,if (t0 = t), t1, . . . tn is a complete development of (t ,R), and if the corre-
sponding reduction of T is (T0 = T),T1, . . . ,Tn , then Tn is the normal form of T ;
therefore, tn = |Tn | does not depend on the development.

Q.E.D.

3. The standardization theorem

Let t be a λ-term. Any redex of t which is not the head redex will be called an
internal redex of t . An internal reduction (resp. head reduction) is, by defini-
tion, a sequence t1, . . . , tn of λ-terms such that ti+1 is obtained by contracting
an internal redex (resp. the head redex) of ti .
A standard reduction consists of a head reduction followed by an internal one.

Theorem 4.39 (Standardization theorem). If t β t ′, then there is a standard re-
duction leading from t to t ′.

Let t be a λ-term, R a set of redexes of t , and NR the sum of the lengths of
all complete developments of (t ,R). Consider the result u of any complete de-

velopment of (t ,R) ; we shall write t
R−→ u. The finite developments theorem

ensures that NR and u are uniquely determined (if R = ;, then NR = 0 and
u ≡ t).
We shall say that the set R is internal if all the members of R are internal re-
dexes of t .

Lemma 4.40. Let r be an internal redex of t , and t ′ the term obtained by con-
tracting r . If t ′ has a head redex, then this is the only residue, relative to r , of the
head redex of t .

The term t cannot be a head normal form, otherwise t ′ would also be one. So
we have t ≡λx1 . . .λxm(λy u)v t1 . . . tn . The result of the contraction of the redex
r is the term : t ′ ≡ λx1 . . .λxm(λy u′)v ′t ′1 . . . t ′n , and the head redex of t ′ can be
seen to be the only residue (relative to r) of the head redex of t .

Q.E.D.

Corollary 4.41. Let R be an internal set of redexes of t . Then every development
of (t ,R) is an internal reduction of t ; if t ′ is the result of a development of (t ,R),
then the head redex of t ′ (if there is one) is the only residue of the head redex of t .

82 Lambda-calculus, types and models

By lemma 4.40, every residue of an internal redex of t relative to an internal
redex of t is an internal redex ; this proves the first part of the corollary. For the
second one, it is enough to apply repeatedly the same lemma.

Q.E.D.

We shall call head reduced image of a term t any term obtained from t by head
reduction.

Theorem 4.42. Consider a sequence t0, t1, . . . , tn of λ-terms, and, for each i , a set

Ri of redexes of ti , such that : t0
R0−→ t1

R1−→ t2 · · · tn−1
Rn−1−→ tn . Then there exist

a sequence u0,u1, . . . ,un of terms, and, for each i , a set Si of internal redexes of

ui , such that : u0
S0−→ u1

S1−→ u2 · · · un−1
Sn−1−→ un , u0 is a head reduced image of t0,

and un ≡ tn .

The proof is by induction on the n-tuple (NRn−1 , . . . , NR0), with the lexicograph-
ical order on the n-tuples of integers. The result is obvious if all the Ri ’s are
internal. Otherwise, consider the least integer k such that tk has a head redex,
which is in Rk .
If k = 0, then t0 has a head redex ρ, which is in R0. Let t ′0 be the term obtained
by contracting the redex ρ, and R′

0 the set of residues of R0 relative to ρ. We

have t0
R0−→ t1, and therefore t ′0

R′
0−→ t1. Moreover, it is clear that NR′

0
< NR0 . Thus

we obtain the expected conclusion by applying the induction hypothesis to the

sequence : t ′0
R′

0−→ t1
R1−→ t2 · · · tn−1

Rn−1−→ tn .

Now suppose k > 0, and let ρk be the head redex of tk , t ′k the term obtained by
contracting that redex, and R′

k the set of residues of Rk relative to ρk . Since

ρk ∈Rk , and tk
Rk−→ tk+1, we clearly have NR′

k
< NRk and t ′k

R′
k−→ t ′k+1.

On the other hand, Rk−1 is an internal set of redexes of tk−1, so by the previous
corollary there is an internal reduction which leads from tk−1 to tk . Thus tk−1

has a head redex, which we denote by ρk−1. Now let R′
k−1 =Rk−1 ∪ {ρk−1} ; the

result of a complete development of tk−1 relative to R′
k−1 can be obtained by

taking the result tk of a complete development of tk−1 relative to Rk−1, then
the result of a complete development of tk relative to the set of residues of ρk−1

relative to Rk−1. But there is only one such residue, namely the head redex of
tk . So the result is t ′k , and therefore we have :

t0
R0−→ t1 · · · tk−1

R′
k−1−→ t ′k

R′
k−→ tk+1 · · · tn−1

Rn−1−→ tn .

This yields the conclusion, since the induction hypothesis applies ; indeed, we
have :
(NRn−1 , . . . , NRk+1 , NR′

k
, NR′

k−1
, . . . , NR0)

< (NRn−1 , . . . , NRk+1 , NRk , NRk−1 , . . . , NR0),

Chapter 4. Normalization and standardization 83

since NR′
k
< NRk .

Q.E.D.

Now we are able to complete the proof of the standardization theorem : con-
sider a reduction (t0 = t), t1, . . . , tn−1, (tn = t ′) which leads from t to t ′. One ob-
tains ti+1 from ti by contracting a redex ri of ti , that is by a complete devel-
opment of the set Ri = {ri }. Thus, by theorem 4.42, there exists a sequence

u0
S0−→ u1

S1−→ u2 · · · un−1
Sn−1−→ un such that u0 is a head reduced image of t0,

un ≡ tn and Si is an internal set of redexes of ui . Hence there is an internal re-
duction which leads from u0 to tn and therefore, there is a standard reduction
which leads from t0 to tn .

Q.E.D.

As a consequence, we obtain an alternative proof of part of theorem 4.9 :

Corollary 4.43. A λ-term is β-equivalent to a head normal form if and only if its
head reduction is finite.

If t isβ-equivalent to a head normal form, then, by the Church-Rosser theorem,
we have t βu, where u is a head normal form. By the standardization theorem,
there exists a head reduced image of t , say t ′, such that some internal reduction
leads from t ′ to u. If t ′ has a head redex, then also u has a head redex (an
internal reduction does not destroy the head redex) : this is a contradiction.
Thus the head reduction of t ends with t ′.
The converse is obvious.

Q.E.D.

Corollary 4.44. If t 'β λx u, then there exists a head reduced image of t of the
form λx v.

Indeed, by the Church-Rosser theorem, we have t βλx u′. By the standardiza-
tion theorem, there exists a head reduced image t ′ of t , such that some internal
reduction leads from t ′ to λx u′. Now an internal reduction cannot introduce
an occurrence of λ in a head position. Therefore t ′ starts with λ.

Q.E.D.

A term t is said to be of order 0 if no term starting with λ is β-equivalent to t .
Therefore, corollary 4.44 can be restated this way : a term t is of order 0 if and
only if no head reduced image of t starts with λ.

Remark.
The standardization theorem is very easy to prove with the hypothesis that the head re-
duction of t is finite or, more generally, that there exists an upper bound for the lengths
of those head reductions of t which lead to a term which can be reduced to t ′.
Indeed, in such a case, it is enough to consider, among all the reductions which lead
from t to t ′, any of those starting with a head reduction of maximal length, let us say

84 Lambda-calculus, types and models

(t0 = t), t1, . . . , tk . The proof of the theorem will be completed if we show that all the
reductions which lead from tk to t ′ are internal.
This is obvious if tk is a head normal form.
Now suppose that tk = λx1 . . .λxm(λx u)v v1 . . . vn and consider a reduction, lead-
ing from tk to t ′, which is not internal ; it cannot start with a head reduction (oth-
erwise we would have a reduction, leading from t to t ′, starting with a head reduc-
tion of length > k). Consequently, it starts with an internal reduction, which leads
from tk = λx1 . . .λxm(λx u)v v1 . . . vn to λx1 . . .λxm(λx u′)v ′v ′

1 . . . v ′
n (with uβu′, v βv ′,

vi βv ′
i). This internal reduction is followed by at least one step of head reduction, which

leads to λx1 . . .λxm u′[v ′/x]v ′
1 . . . v ′

n . Now this term can be obtained from tk by the fol-
lowing path : first one step of head reduction, which gives λx1 . . .λxm u[v/x]v1 . . . vn ;
then aβ-reduction applied to u, v, v1, . . . , vn , which leads toλx1 . . .λxm u′[v ′/x]v ′

1 . . . v ′
n .

Sinceλx1 . . .λxm u′[v ′/x]v ′
1 . . . v ′

n β t ′, what we have obtained is a reduction which leads
from tk to t ′ and starts with a head reduction : this is impossible.

Q.E.D.

The standardization theorem is usually stated in a (slightly) stronger form.
First, we define the rank of a redex ρ in a λ-term t , by induction on the length
of t .
If t =λx u, then ρ is a redex of u ; the rank of ρ in t is the same as in u.
If t = (u)v then either ρ = t , or ρ is a redex of u, or ρ is a redex of v ;
if ρ = t , then the rank of ρ in t is 0 ;
if ρ is in u, then its rank in t is the same as in u ;
if ρ is in v , then its rank in t is its rank in v plus the number of redexes in u.
Remark. The rank describes the order of redexes in t , from left to right (the position of

a redex is given by the position of its leading λ).

Consider a reduction t0, . . . , tk and let ni be the rank, in ti , of the redex ρi which
is reduced at this step. The reduction will be called strongly standard if we have
n0 ≤ n1 ≤ . . . ≤ nk−1.

Remark. A strongly standard reduction is clearly a standard one. Indeed, if there is a

head redex, then its rank is 0.

Theorem 4.45 (Standardization theorem, 2nd form). If t β t ′, then there is a
strongly standard reduction leading from t to t ′.

The proof is by induction on the length of t ′. By theorem 4.39, we consider a
standard reduction from t to t ′. This standard reduction begins with a head
reduction from t to u, which is followed by an internal reduction from u to t ′.
By proposition 2.2, we have u = λx1 . . .λxk (ρ)u1 . . .un where ρ is a redex or a
variable ; therefore, we have :
t ′ =λx1 . . .λxk (ρ′)u′

1 . . .u′
n , with ρβρ′,u1βu′

1, . . . ,unβu′
n .

Then, there are two possibilities :

Chapter 4. Normalization and standardization 85

i) If ρ = (λx v)w is a redex, then ρ′ = (λx v ′)w ′ (because the reduction from u to
t ′ is internal) and we have v βv ′, w βw ′.
By induction hypothesis, there are strongly standard reductions leading from v
to v ′, w to w ′, u1 to u′

1, . . . , un to u′
n . By putting these reductions in sequence,

we get a strongly standard reduction from u to t ′ ; and therefore, also a strongly
standard reduction from t to t ′.
ii) If ρ is a variable, then ρ = ρ′ and we have u1βu′

1, . . . ,unβu′
n . The end of the

proof is the same as in case (i).
Q.E.D.

References for chapter 4

[Bar83], [Bar84], [Cop78], [Hin86], [Mit79], [Pot80].
(The references are in the bibliography at the end of the book).
The proof given above of the finite developments theorem was communicated
to me by M. Parigot.

86 Lambda-calculus, types and models

Chapter 5

The Böhm theorem

Let αn = λz1 . . .λznλz(z)z1 . . . zn for every n ≥ 0 (in particular, α0 = λz z) ; αn is
the “ applicator ” of order n (it applies an n-ary function to its arguments).
Propositions 5.1 and 5.8 show that, in some weak sense, applicators behaves
like variables with respect to normal terms.

Proposition 5.1.
Let t be a normal λ-term and x1, . . . , xk variables ; then t [αn1 /x1, . . . ,αnk /xk] is
normalizable provided that n1, . . . ,nk ∈N are large enough.

The proof is by induction on the length of t . If t is a variable, then the result is
clear, since αn is normal.
If t = λy u, then t [αn1 /x1, . . . ,αnk /xk] = λy u[αn1 /x1, . . . ,αnk /xk] ; by induc-
tion hypothesis, u[αn1 /x1, . . . ,αnk /xk] is normalizable provided that n1, . . . ,nk

are large enough, thus so is t [αn1 /x1, . . . ,αnk /xk].
Now we can assume that t does not start with λ. Since t is normal, by proposi-
tion 2.2, we have t = (y)t1 . . . tp , where y is a variable. Now ti is shorter than t , so
ti [αn1 /x1, . . . ,αnk /xk] is normalizable provided that n1, . . . ,nk are large enough.
Let ui be its normal form.
If y ∉ {x1, . . . xk }, then t [αn1 /x1, . . . ,αnk /xk] 'β (y)u1 . . .up , which is a normal
form.
If y ∈ {x1, . . . xk }, say y = x1, then :
t [αn1 /x1, . . . ,αnk /xk] 'β (αn1)u1 . . .up

'β (λx1 . . .λxn1λx(x)x1 . . . xn1)u1 . . .up ;
if n1 ≥ p, this term becomes, after β-conversion :

λxp+1 . . .λxn1λx(x)u1 . . .up xp+1 . . . xn1

which is in normal form.
Q.E.D.

Remark. In proposition 5.1, the condition “ provided that n1, . . . , nk are large enough ”

is indispensable : if δ=λy(y)y and t = (x)δδ, then t [α0/x] is not normalizable.

87

88 Lambda-calculus, types and models

The main result in this chapter is the following theorem, due to C. Böhm :

Theorem 5.2. Let t , t ′ be two closed normal λ-terms, which are not βη-equi-
valent ; then there exist closed λ-terms t1, . . . , tk such that :

(t)t1 . . . tk 'β 0, and (t ′)t1 . . . tk 'β 1.

Recall that, by definition, 0 =λxλy y and 1 =λxλy x.

Corollary 5.3. Let t , t ′ be two closed normal λ-terms, which are not βη-equi-
valent, and v, v ′ two arbitrary λ-terms. Then there exist λ-terms t1, . . . , tk such
that (t)t1 . . . tk 'β v and (t ′)t1 . . . tk 'β v ′.

Indeed, by theorem 5.2, we have (t)t1 . . . tk 'β 0 and (t ′)t1 . . . tk 'β 1 ;
thus (t)t1 . . . tk v ′v 'β v and (t ′)t1 . . . tk v ′v 'β v ′.
Q.E.D.

The following corollary shows that the βη-equivalence is maximal, among the
λ-compatible equivalence relations onΛwhich contain the β-equivalence.

Corollary 5.4. Let ' be an equivalence relation on Λ, containing 'β, such that :
t ' t ′ ⇒ (t)u ' (t ′)u and λx t ' λx t ′, for every term t , t ′,u and every variable x.
If there exist two normalizable non βη-equivalent terms t0, t ′0 such that t0 ' t ′0,
then v ' v ′ for all terms v, v ′.

Indeed, let x1, . . . , xk be the free variables of t0, t ′0, let t = λx1 . . .λxk t0 and t ′ =
λx1 . . .λxk t ′0. Then t ' t ′ and t is not βη-equivalent to t ′. Thus, by corollary 5.3,
we have (t)t1 . . . tk 'β v and (t ′)t1 . . . tk 'β v ′ ; therefore v ' v ′.
Q.E.D.

We will call Böhm transformation any function fromΛ intoΛ, obtained by com-
posing “ elementary ” functions of the form : t 7→ (t)u0 or t 7→ t [u0/x] (where
u0 and x are given term and variable).

The function t 7→ (t)u0, fromΛ toΛ, will be denoted by Bu0 .
The function t 7→ t [u0/x] will be denoted by Bu0,x .

Note that every Böhm transformation F is compatible with both β- and βη-
equivalence : t 'β t ′ ⇒ F (t) 'β F (t ′) and t 'βη t ′ ⇒ F (t) 'βη F (t ′).

Lemma 5.5. For every Böhm transformation F , there exist terms t1, . . . , tk such
that F (t) = (t)t1 . . . tk for every closed term t.

The proof is immediate, by induction on the number of elementary functions
of which F is the composite. Indeed, if F (t) is in the indicated form, then so are
(F (t))u0 and (F (t))[u0/x] : the former is (t)t1 . . . tk u0, and the latter (t)t ′1 . . . t ′k
where t ′i = ti [u0/x], since t is closed.
Q.E.D.

Chapter 5. The Böhm theorem 89

Theorem 5.6. Let x1, . . . , xk be distinct variables and t , t ′ be two normal non-βη-
equivalent terms. Then, for all distinct integers n1, . . . ,nk , provided that they are
large enough, there exists a Böhm transformation F such that :
F (t [αn1 /x1, . . . ,αnk /xk]) 'β 0 and F (t ′[αn1 /x1, . . . ,αnk /xk]) 'β 1.

Theorem 5.2 is an immediate consequence of theorem 5.6 : indeed, if t is a
closed term, and F a Böhm transformation, then, by lemma 5.5, we have F (t) =
(t)t1 . . . tn , where t1, . . . , tn depend only on F . By applying theorem 5.6, we there-
fore obtain (t)t1 . . . tn 'β 0, and (t ′)t1 . . . tn 'β 1. We may suppose that t1, . . . , tn

are closed terms (in case they have free variables x1, . . . , xp , simply replace ti by
ti [a1/x1, . . . , ap /xp], where a1, . . . , ap are fixed closed terms, for instance 0).

We also deduce :

Corollary 5.7. Let ' be an equivalence relation on Λ, containing 'β, such that
t ' t ′ ⇒ (t)u ' (t ′)u and t [u/x] ' t ′[u/x] for every term t , t ′,u and every vari-
able x. If there exist two normalizable non-βη-equivalent terms t0, t ′0 such that
t0 ' t ′0, then t ' t ′ for all terms t , t ′.

By theorem 5.6 (where we take k = 0), there exists a Böhm transformation F
such that F (t0) 'β 0, and F (t ′0) 'β 1. Thus it follows from the assumptions about
relation ' that t0 ' t ′0 ⇒ F (t0) ' F (t ′0). Therefore 0 ' 1, and hence (0)t ′t ' (1)t ′t ,
that is t ' t ′.
Q.E.D.

Proposition 5.8. Let x1, . . . , xk be distinct variables and t , t ′ be two normal non-
βη-equivalent terms. Then, for all distinct integers n1, . . . ,nk , provided that they
are large enough, the terms :
t [αn1 /x1, . . . ,αnk /xk] and t ′[αn1 /x1, . . . ,αnk /xk] are not βη-equivalent.

Immediate from theorem 5.6.
Q.E.D.

Corollary 5.9. Let t , t ′ be two normalizable terms :
i) if t [αn/x] 'βη t ′[αn/x] for infinitely many integers n, then t 'βη t ′ ;
ii) if (t)αn 'βη (t ′)αn for infinitely many integers n, then t 'βη t ′.

Proof of (i) : it is the particular case k = 1 of proposition 5.8.
Proof of (ii) : let x be a variable with no occurrence in t , t ′ ; by applying (i) to
the terms (t)x and (t ′)x, we obtain : (t)x 'βη (t ′)x, thus λx(t)x 'βη λx(t ′)x, and
therefore t 'βη t ′.
Q.E.D.

The following result will be used to prove theorem 5.6 :

90 Lambda-calculus, types and models

Lemma 5.10. Let t ,u be two λ-terms. If one of the following conditions hold,
then there exists a Böhm transformation F such that :

F (t) 'β 0 and F (u) 'β 1.
i) t = (x)t1 . . . tp , u = (y)u1 . . .uq , where x 6= y or p 6= q ;
ii) t =λx1 . . .λxmλx(x)t1 . . . tp , u =λx1 . . .λxnλx(x)u1 . . .uq

where m 6= n or p 6= q.

Proof of (i).
Case 1 : x 6= y ; letσ0 =λz1 . . .λzp 0,σ1 =λz1 . . .λzq 1. By β-reduction, we obtain
immediately Bσ0,xBσ1,y (t) 'β 0 and Bσ0,xBσ1,y (u) 'β 1. Thus Bσ0,xBσ1,y is the
desired Böhm transformation.
Case 2 : x = y and p 6= q , say p < q ; then we have :
Bαq ,x(t) = (αq)t ′1 . . . t ′p and Bαq ,x(u) = (αq)u′

1 . . .u′
q (where τ′ = τ[αq /x] for every

term τ). By β-reduction, we obtain :
Bαq ,x(t) 'β λzp+1 . . .λzqλz(z)t ′1 . . . t ′p zp+1 . . . zq and
Bαq ,x(u) 'β λz(z)u′

1 . . .u′
q .

Then the result follows from case 1 of part (ii), treated below.

Proof of (ii).
Case 1 : m 6= n, say m < n ; take distinct variables z1, . . . , zn , z not occurring in
t ,u. Let B = BzBzn . . .Bz1 . Then, by β-reduction, we have :
B(t) 'β (zm+1)t ′1 . . . t ′p zm+2 . . . zn z, and B(u) 'β (z)u′′

1 . . .u′′
q (where τ′ is the term

τ[z1/x1, . . . , zm/xm , zm+1/x], and τ′′ is the term τ[z1/x1, . . . , zn/xn , z/x]).
Since zm+1 6= z, the result follows from case 1 of part (i) above.
Case 2 : m = n and p 6= q ; let B = BxBxm . . .Bx1 . We have :
B(t) = (x)t1 . . . tp and B(u) = (x)u1 . . .uq .
Since p 6= q , the result follows from case 2 of (i).
Q.E.D.

The length l g (t) of a term t is inductively defined as follows (actually, it is the
length of the expression obtained from t by erasing all the parentheses) :

if t is a variable, then l g (t) = 1 ;
l g ((t)u) = l g (t)+ l g (u) ; l g (λx t) = l g (t)+2.

We now prove theorem 5.6 by induction on l g (t)+ l g (t ′).

Take a variable y 6= x1, . . . , xk , with no occurrence in t , t ′, and let w, w ′ be the
terms obtained from (t)y , (t ′)y by normalization. If w 'βη w ′, then λy w 'βη
λy w ′, thus λy(t)y 'βη λy(t ′)y and hence t 'βη t ′, which contradicts the hy-
pothesis. Thus w and w ′ are not βη-equivalent.

If both t , t ′ start with λ, say t =λx u, t ′ =λx ′u′, then :
w = u[y/x], w ′ = u′[y/x ′] and l g (w)+ l g (w ′) = l g (t)+ l g (t ′)−4.
If t starts with λ, say t = λx u, while t ′ does not, then either t ′ = (v ′)u′ or t ′ is a
variable. Thus, w = u[y/x], w ′ = (t ′)y and l g (w)+ l g (w ′) = l g (t)+ l g (t ′)−1.

Chapter 5. The Böhm theorem 91

Therefore, in both cases, we can apply the induction hypothesis to w, w ′.
Thus, given large enough distinct integers n1, . . . ,nk , there exists a Böhm trans-
formation F such that :

F (w[αn1 /x1, . . . ,αnk /xk]) 'β 0 and F (w ′[αn1 /x1, . . . ,αnk /xk]) 'β 1.
Now we have :

w[αn1 /x1, . . . ,αnk /xk] 'β (t [αn1 /x1, . . . ,αnk /xk])y and
w ′[αn1 /x1, . . . ,αnk /xk] 'β (t ′[αn1 /x1, . . . ,αnk /xk])y .

It follows that Böhm transformation F By have the required properties :
F By (t [αn1 /x1, . . . ,αnk /xk]) 'β 0 and F By (t ′[αn1 /x1, . . . ,αnk /xk])) 'β 1.

Now we may suppose that none of t , t ′ start with λ (note that this happens at
the first step of the induction, since we then have l g (t) = l g (t ′) = 1, so t and t ′

are variables).
Since t , t ′ are normal, we have t = (x)t1 . . . tp and t ′ = (y)t ′1 . . . t ′q , where x, y are
variables, and t1, . . . , tp , t ′1, . . . , t ′q are normal terms.

We now fix distinct integers n1, . . . ,nk and distinct variables x1, . . . , xk . We will
use the notation τ[] as an abbreviation for τ[αn1 /x1, . . . ,αnk /xk], for every λ-
term τ.
Now, there are the following three possibilities :

1. Suppose that x, y ∉ {x1, . . . , xk }. Then we have :

t [] = (x)t1[] . . . tp [] and t ′[] = (y)t ′1[] . . . t ′q [].

If x 6= y or p 6= q , then, by lemma 5.10(i), there exists a Böhm transformation F
such that F (t []) 'β 0 and F (t ′[]) 'β 1 : this is the expected result.
In case x = y and p = q , take any integer n > n1, . . . ,nk , p. Then :

Bαn ,x(t []) = (αn)t1[[]] . . . tp [[]] and Bαn ,x(t ′[]) = (αn)t ′1[[]] . . . t ′p [[]]

(the notation τ[[]] stands for τ[αn1 /x1, . . . ,αnk /xk ,αn/x], for every term τ).
Since αn =λz1 . . .λznλz(z)z1 . . . zn , we therefore obtain, by β-reduction :
Bαn ,x(t []) 'β λzp+1 . . .λznλz(z)t1[[]] . . . tp [[]]zp+1 . . . zn and
Bαn ,x(t ′[]) 'β λzp+1 . . .λznλz(z)t ′1[[]] . . . t ′q [[]]zp+1 . . . zn .
Note that the terms ti [[]] and t ′i [[]] contain none of the variables z, z1, . . . , zn .
We have :
BzBzn . . .Bzp+1 Bαn ,x(t []) 'β (z)t1[[]] . . . tp [[]]zp+1 . . . zn and
BzBzn . . .Bzp+1 Bαn ,x(t ′[]) 'β (z)t ′1[[]] . . . t ′p [[]]zp+1 . . . zn .
Now, by hypothesis, t = (x)t1 . . . tp and t ′ = (x)t ′1 . . . t ′p , and t and t ′ are not βη-
equivalent. Thus, for some i (1 ≤ i ≤ p), ti and t ′i are not βη-equivalent.
Let πi = λx1 . . .λxn xi and B = BzBzn . . .Bzp+1 Bαn ,x . Since the variable z occurs
neither in ti [[]] nor in t ′i [[]], we have :
Bπi ,zB(t []) 'β ti [[]] ; Bπi ,zB(t ′[]) 'β t ′i [[]].
Now l g (ti)+l g (t ′i) < l g (t)+l g (t ′). Thus, by induction hypothesis, provided that
n1, . . . ,nk ,n are large enough distinct integers, there exists a Böhm transforma-

92 Lambda-calculus, types and models

tion, say F , such that F (ti [[]]) 'β 0 and F (t ′i [[]]) 'β 1. Therefore, F Bπi ,zB(t []) 'β
0 and F Bπi ,zB(t ′[]) 'β 1, which is the expected result.

2. Now suppose that x ∈ {x1, . . . , xk }, for instance x = x1, while y ∉ {x1, . . . , xk }.
Then we have t [] = (αn1)t1[] . . . tp [] and t ′[] = (y)t ′1[] . . . t ′q []. For every n1 ≥ p, we
have, by β-reduction :

t [] 'β λzp+1 . . .λzn1λz(z)t1[] . . . tp []zp+1 . . . zn1 .

Therefore, if we let B = BzBzn1
. . .Bzp+1 , we have :

B(t []) 'β (z)t1[] . . . tp []zp+1 . . . zn1 and
B(t ′[]) = (y)t ′1[] . . . t ′q []zp+1 . . . zn1 z.

Since y and z are distinct variables, lemma 5.10(i) provides a Böhm transfor-
mation F such that F B(t []) 'β 0 and F B(t ′[]) 'β 1, which is the expected result.

3. Finally, suppose that x, y ∈ {x1, . . . , xk }.
If x 6= y , say, for instance, x = x1, y = x2, then :

t [] = (αn1)t1[] . . . tp [] and t ′[] = (αn2)t ′1[] . . . t ′q [].
For all n1 ≥ p and n2 ≥ q , we have, by β-reduction :

t [] 'β λzp+1 . . .λzn1λz(z)t1[] . . . tp []zp+1 . . . zn1 and
t ′[] 'β λzq+1 . . .λzn2λz(z)t ′1[] . . . t ′q []zq+1 . . . zn2 .

Since n1 6= n2 (by hypothesis), the result follows from lemma 5.10(ii).

If x = y , say, for instance, x = y = x1, then :

t [] = (αn1)t1[] . . . tp [] and t ′[] = (αn1)t ′1[] . . . t ′q [].

For every n1 ≥ p, q , we have, by β-reduction :

t [] 'β λzp+1 . . .λzn1λz(z)t1[] . . . tp []zp+1 . . . zn1 and
t ′[] 'β λzq+1 . . .λzn1λz(z)t ′1[] . . . t ′q []zq+1 . . . zn1 .

If p 6= q , then the results follows from lemma 5.10(ii) (n1 −p 6= n1 −q).

If p = q , then :

t [] 'β λzp+1 . . .λzn1λz(z)t1[] . . . tp []zp+1 . . . zn1 and
t ′[] 'β λzp+1 . . .λzn1λz(z)t ′1[] . . . t ′p []zp+1 . . . zn1 .

Now, by hypothesis, t = (x)t1 . . . tp and t ′ = (x)t ′1 . . . t ′p , and t and t ′ are not βη-
equivalent. Thus, for some i (1 ≤ i ≤ p), ti and t ′i are not βη-equivalent.
Let πi = λx1 . . .λxn1 xi and B = BzBzn1

. . .Bzp+1 . Since the variables z, z j occur
neither in ti [] nor in t ′i [], we have :

Bπi ,zB(t []) 'β ti [] ; Bπi ,zB(t ′[]) 'β t ′i [].

Now l g (ti)+l g (t ′i) < l g (t)+l g (t ′). Thus, by induction hypothesis, provided that
n1, . . . ,nk are large enough distinct integers, there exists a Böhm transforma-
tion, say F , such that F (ti []) 'β 0 and F (t ′i []) 'β 1. Therefore, F Bπi ,zB(t []) 'β 0
and F Bπi ,zB(t ′[]) 'β 1.
This completes the proof.

Q.E.D.

Chapter 5. The Böhm theorem 93

References for chapter 5

[Bar84], [Boh68].
(The references are in the bibliography at the end of the book).

94 Lambda-calculus, types and models

Chapter 6

Combinatory logic

1. Combinatory algebras

In this chapter, we shall deal with theories in the first order predicate calculus
with equality and we assume that the reader has some familiarity with elemen-
tary model theory. We consider a language L0 consisting of one binary func-
tion symbol Ap (for “ application ”). Given terms f , t , u, v , . . . , the term Ap(f , t)
will be written (f)t or f t ; the terms ((f)t)u, (((f)t)u)v , . . . will be respectively
written (f)tu, (f)tuv , . . . or even f tu, f tuv , . . .
A model for this language (that is a non-empty set A, equipped with a binary
function) is called an applicative structure.
Let L be the language obtained by adding to L0 two constant symbols K ,S.
We shall use the following notations :
t ≡ u will mean that t and u are identical terms of L ;
M |= F will mean that the closed formula F is satisfied in the model M (of L) ;
A ` F will mean that F is a consequence of the set A of formulas, in other
words, that every model of A satisfies F .
Given terms t ,u of L , and a variable x, t [u/x] denotes the term obtained from
t by replacing every occurrence of x with u.

Consider the following axioms :

(C0) (K)x y = x ; (S)x y z = ((x)z)(y)z.

Actually, we consider the closure of these formulas, namely, the axioms :
∀x∀y{(K)x y = x} ; ∀x∀y∀z{(S)x y z = ((x)z)(y)z}.

The term (S)K K is denoted by I . Thus C0 ` (I)x = x.
A model of this system of axioms is called a combinatory algebra. The combi-
natory algebra consisting of one single element is said to be trivial.

For every term t of L , and every variable x, we now define a term of L , denoted
by λx t , by induction on the length of t :

95

96 Lambda-calculus, types and models

• if x does not occur in t , then λx t ≡ (K)t ;
• λx x ≡ (S)K K ≡ I ;
• if t ≡ (u)v and x occurs in t , then λx t ≡ ((S)λx u)λx v .

Proposition 6.1. For every term t of L , the term λx t does not contain the vari-
able x, and we have C0 `∀x{(λx t)x = t }.

It follows that C0 ` (λx t)u = t [u/x], for all terms t ,u of L .

It is obvious that x does not occur in λx t . The second part of the statement is
proved by induction on the length of t :
If x does not occur in t , then (λx t)x ≡ (K)t x, and C0 ` (K)t x = t .
If t ≡ x, then (λx t)x ≡ (I)x, and C0 ` (I)x = x.
If t ≡ (u)v and x occurs in t , then (λx t)x ≡ (((S)λx u)λx v)x. By the second
axiom of C0, we have C0 ` (λx t)x = ((λx u)x)(λx v)x. Now, by induction hy-
pothesis : C0 ` (λx u)x = u and (λx v)x = v . Therefore, C0 ` (λx t)x = (u)v = t .

Q.E.D.

It follows immediately that :
C0 ` (λx1 . . .λxk t)x1 . . . xk = t for all variables x1, . . . , xk .

Proposition 6.2. All non-trivial combinatory algebras are infinite.

Let A be a finite combinatory algebra, and n its cardinality. For 0 ≤ i ≤ n, let
ai ∈ A be the interpretation in A of the term λx0λx1 . . .λxn xi . Then there exist
two distinct integers i , j ≤ n such that ai = a j . Suppose, for example, that i = 0
and j = 1. We therefore have :
a0b0b1 . . .bn = a1b0b1 . . .bn , for all b0,b1, . . . ,bn ∈ A.
Thus b0 = b1 for all b0,b1 ∈ A, which means that A is trivial.

Q.E.D.

An applicative structure A is said to be combinatorially complete if, for every
term t of L0, with variables among x1, . . . , xk , and parameters in A, there exists
an element f ∈ A such that A |= (f)x1 . . . xk = t , that is to say :
(f)a1 . . . ak = t [a1/x1, . . . , ak /xk] for all a1, . . . , ak ∈ A).
This property is therefore expressed by the following axiom scheme :

(CC) ∃ f ∀x1 . . .∀xn{(f)x1 . . . xn = t }

where t is an arbitrary term of L0, and n ≥ 0.

Proposition 6.3. An applicative structure A is combinatorially complete if and
only if A can be given a structure of combinatory algebra.

In other words, A is combinatorially complete if and only if the constant sym-
bols K and S may be interpreted in A in such a way as to satisfy C0.

Chapter 6. Combinatory logic 97

Indeed, if A is a combinatory algebra, and t is any term with variables among
x1, . . . , xn , then it suffices to take f =λx1 . . .λxn t .
Conversely, if A is combinatorially complete, then there exist k, s ∈ A satisfying
C0 : it is enough to apply CC , first with n = 2 and t = x1, then with n = 3 and
t = ((x1)x3)(x2)x3.

Q.E.D.

The axiom scheme CC is thus equivalent to the conjunction of two particular
cases :
(CC ′) ∃k∀x∀y{(k)x y = x} ; ∃s∀x∀y∀z{(s)x y z = ((x)z)(y)z}

Let E denote the term λxλy(x)y . By proposition 6.1, we therefore have :
C0 ` (E)x y = (x)y .

By definition of λ, we have λy(x)y ≡ ((S)(K)x)I , and hence :
E ≡λx((S)(K)x)I .

Thus, by proposition 6.1 : C0 ` (E)x = ((S)(K)x)I .
Let t be a term containing no occurrence of the variable x. Then, by definition
of λ : λx(t)x ≡ ((S)λx t)I ≡ ((S)(K)t)I . We have thus proved :

Proposition 6.4. Let t be a term and x a variable not occurring in t ; then :
C0 `λx(t)x = (E)t = ((S)(K)t)I .

We now consider the axioms :

(C1) K =λxλy(K)x y ; S =λxλyλz(S)x y z.

According to proposition 6.1, the following formulas are consequences of the
axioms C0 +C1 :

(K)x =λy(K)x y ; (S)x y =λz(S)x y z ;

thus, by proposition 6.4, so are the formulas :

(C 0
1) (E)(K)x = (K)x ; (E)(S)x y = (S)x y .

Proposition 6.5. The following formulas are consequences of C0 +C 0
1 :

i) λx t = (E)λx t =λx(λx t)x for every term t of L ;
ii) (E)E = E ; (E)(E)x = (E)x.

i) The second identity follows from proposition 6.4, since x does not occur in
λx t . On the other hand, by definition of λx t , we have either λx t ≡ (K)t , or
λx t ≡ (S)K K , or λx t ≡ (S)uv for suitable terms u, v . It follows immediately
that C 0

1 ` (E)λx t =λx t .
ii) We have E =λxλy(x)y , and hence C0 +C 0

1 ` (E)E = E , by (i). Now, by propo-
sition 6.4, C0 ` (E)x =λy(x)y , and therefore, by (i) again :
C0 +C 0

1 ` (E)(E)x = (E)x.
Q.E.D.

98 Lambda-calculus, types and models

2. Extensionality axioms

The following axiom scheme :

(WEXT) ∀x(t = u) →λx t =λx u

(where t ,u are arbitrary terms of L , allowed to contain variables) is called the
weak extensionality scheme.
As a consequence of this axiom, we obtain (by induction on n) :

∀x1 . . .∀xn{t = u} →λx1 . . .λxn t =λx1 . . .λxnu.

The weak extensionality axiom is the following formula :

(Wext) ∀y∀z{∀x[(y)x = (z)x] → (E)y = (E)z}.

Proposition 6.6. WEXT and Wext are equivalent modulo C0 +C 0
1 .

Indeed, let A be a model of C0 +C 0
1+ WEXT, and b,c ∈ A such that :

(b)x = (c)x for every x ∈ A. Applying WEXT with t ≡ (b)x and u ≡ (c)x, we
obtain λx(b)x = λx(c)x. Now both λx(b)x = (E)b and λx(c)x = (E)c hold in A,
since A |=C0 (proposition 6.4). Thus (E)b = (E)c.
Conversely, let A be a model of C0+C 0

1+ Wext, and t ,u two terms with parame-
ters in A, where x is the only variable ; assume that A |= ∀x(t = u). Since A |=C0,
we have A |= (λx t)x = t , (λx u)x = u (proposition 6.1).
Thus A |= ∀x{(λx t)x = (λx u)x}.
By Wext, we obtain A |= (E)λx t = (E)λx u, and hence A |=λx t =λx u
(by proposition 6.5).

Q.E.D.

We shall denote by C L (combinatory logic) the system of axioms :
C0 +C1+ Wext (or, equivalently, C0 +C1+ WEXT).

Now we consider the axioms :

(C ′
1) (E)K = K ; (E)(K)x = (K)x ;

(E)S = S ; (E)(S)x = (S)x ; (E)(S)x y = (S)x y .

Proposition 6.7. C L is equivalent to C0 +C ′
1+ Wext.

The following formulas (in fact, their closures) are obviously consequences of
C0 +C1 :

K =λxλy(K)x y ; (K)x =λy(K)x y ;
S =λxλyλz(S)x y z ; (S)x =λyλz(S)x y z ; (S)x y =λz(S)x y z.

In view of proposition 6.5, we deduce immediately that C ′
1 is a consequence of

C0 +C1, and therefore of C L.
Conversely, we have C ′

1 ` (S)x y = (E)(S)x y , and hence :
C0 +C ′

1 ` (S)x y =λz(S)x y z.
Now we also have : C0 ` (λyλz(S)x y z)y =λz(S)x y z.

Chapter 6. Combinatory logic 99

Thus C0 +C ′
1 ` (S)x y = (λyλz(S)x y z)y . By Wext, we obtain first :

(E)(S)x = (E)λyλz(S)x y z, then (S)x =λyλz(S)x y z (by C ′
1 and proposition 6.5) ;

thus (S)x = (λxλyλz(S)x y z)x. By applying Wext again, we conclude that :
(E)S = (E)λxλyλz(S)x y z, and hence S = λxλyλz(S)x y z (by C ′

1 and proposi-
tion 6.5 again). The same kind of proof gives the equation K =λxλy(K)x y .

Q.E.D.

The extensionality axiom is the formula :

(Ext) ∀y∀z{∀x[(y)x = (z)x] → y = z}.

As a consequence of this axiom, we obtain (by induction on n) :

(Extn) ∀y∀z{∀x1 . . .∀xn[(y)x1 . . . xn = (z)x1 . . . xn] → y = z}.

We now prove that, modulo C0, the extensionality axiom is equivalent to :

Wext +(E = I).

Indeed, it is clear that Wext +(E = I)+C0 ` Ext (since C0 + (E = I) ` (E)x = x).
Conversely, we have C0 ` (E)x y = (I)x y = (x)y . With Ext2, we obtain C0+ Ext
` E = I .

We shall denote by EC L (extensional combinatory logic) the system of axioms
C0+ Ext.
Note that C0+ Ext ` C1, and thus EC L ` C L ; indeed, by proposition 6.1, for
every term T , we have :
C0 ` (T)x1 . . . xn = (λx1 . . .λxn(T)x1 . . . xn)x1 . . . xn ;
then, by Extn , we can deduce T =λx1 . . .λxn(T)x1 . . . xn .

Scott-Meyer’s axioms

Let A be an applicative structure, with a distinguished element e, satisfying the
following axioms, known as Scott-Meyer’s axioms :
i) Combinatorial completeness

∃k∀x∀y[(k)x y = x] ; ∃s∀x∀y∀z[(s)x y z = ((x)z)(y)z] ;
ii) ∀x∀y[(e)x y = (x)y] ;
iii) Weak extensionality

∀y∀z{∀x[(y)x = (z)x] → (e)y = (e)z}

Theorem 6.8. Let A be an applicative structure satisfying the Scott-Meyer’s ax-
ioms. Then there is a unique way of assigning values in A to the symbols K ,S of
L so that A becomes a model of C L satisfying ∀x[(E)x = (e)x]. Moreover, in that
model, we have E = (e)e.

Notice that E is a term of L , not a symbol.

100 Lambda-calculus, types and models

Unicity : suppose that values have been assigned to K ,S so that C L is satisfied.
We have (E)x = (e)x, thus (E)E = (e)E (take x = E), and hence E = (e)E (we have
seen that C L ` E = (E)E). Now the above weak extensionality axiom gives :
∀x[(E)x = (e)x] → (e)E = (e)e. Therefore, E = (e)e.
Let K1,S1 and K2,S2 be two possible interpretations of K ,S in A such that the
required conditions hold, and let E1,E2 be the corresponding interpretations of
E (actually, we have seen that E1 = E2 = (e)e) ; thus (E1)x = (E2)x = (e)x and
(S1)x y z = (S2)x y z = ((x)z)(y)z ; by weak extensionality, it follows that :
(e)(S1)x y = (e)(S2)x y , and we therefore obtain : (E1)(S1)x y = (E2)(S2)x y . Since
C L holds, the axioms of C ′

1 are satisfied and we have :
(Ei)(Si)x y = (Si)x y(i = 1,2) ; therefore (S1)x y = (S2)x y .
By weak extensionality again, it follows that (e)(S1)x = (e)(S2)x, that is :
(E1)(S1)x = (E2)(S2)x, and hence (S1)x = (S2)x (by C ′

1). Using the weak exten-
sionality once more, we obtain (e)S1 = (e)S2, that is to say (E1)S1 = (E2)S2, and
hence S1 = S2 (by C ′

1). The proof of K1 = K2 is similar.

Existence : take k, s ∈ A such that (k)x y = y and (s)x y z = ((x)z)(y)z for all
x, y, z ∈ A ; this is possible according to the first two axioms of Scott-Meyer. For
every term t with parameters in A (and containing variables), we now define,
inductively, a term λ′x t :
λ′x t = (e)(k)t if x does not occur in t ;
λ′x x = (e)i with i = (s)kk (thus (i)x = x for every x ∈ A) ;
λ′x t = (e)((s)λ′x u)λ′x v if t = (u)v and x occurs in t .

Notice that (e)x y = x y , and hence, by weak extensionality (Scott-Meyer’s ax-
ioms), (e)(e)x = (e)x. It follows immediately that (e)λ′x t = λ′x t for every term
t .
Moreover, we have (λ′x t)x = t (by induction on t , as in proposition 6.1).

Let K =λ′xλ′y x ; S =λ′xλ′yλ′z((x)z)(y)z.
We do have (K)x y = x, (S)x y z = ((x)z)(y)z ; moreover, since (S)x y = λ′z . . .,
we also have (S)x y = (e)(S)x y ; similarly, (e)(S)x = (S)x and (e)S = S. On the
other hand, since (S)x y z = (s)x y z, we obtain (e)(s)x y = (e)(S)x y = (S)x y by
weak extensionality ; similarly, (e)(k)x = (K)x. Therefore, we may restate the
definition of λ′x t this way :
λ′x t = (K)t if x does not occur in t ;
λ′x x = I with I = (S)K K (indeed, we have (I)x = (i)x, thus (e)I = (e)i ; but
(e)I = I by definition of I) ;
λ′x t = ((S)λ′x u)λ′x v if t = (u)v and x occurs in t .
We see that this definition is the same as that of the term λx t ; thus λ′x t =λx t .
Now let E = λxλy(x)y ; thus (E)x = λy . . ., and therefore (e)(E)x = (E)x ; now
(E)x y = (x)y , and hence, by weak extensionality, (e)(E)x = (e)x, that is to say
(E)x = (e)x.

Chapter 6. Combinatory logic 101

This proves that the axiom Wext holds, as well as C0. Besides, we have :
(E)λx t =λx t for every term t (since (e)λ′x t =λ′x t).
Since K = λxλy x and S = λxλyλz((x)z)(y)z, we may deduce, using C0, that
(K)x = λy x ; (S)x = λyλz((x)z)(y)z ; (S)x y = λz((x)z)(y)z. Thus (E)K = K ,
(E)(K)x = (K)x, (E)S = S, (E)(S)x = (S)x and (E)(S)x y = (S)x y . Thus the axioms
C ′

1 hold, and finally our model satisfies C0 +C ′
1+ Wext, that is to say C L.

Q.E.D.

3. Curry’s equations

Let A be a model of C0+C 0
1 . We wish to construct an embedding of A in a model

of Wext.
Let k, s,e denote the interpretations in A of the symbols K ,S and the closed
term E of L . Define B = (e)A = {(e)a ; a ∈ A} = {a ∈ A, (e)a = a} (indeed,
(e)(e)a = (e)a). We shall define an applicative structure over B : its binary op-
eration will be denoted by [a]b, and defined by [a]b = (s)ab (note that we do
have (s)ab ∈ B since (e)(s)ab = (s)ab, by C 0

1).
We define a one-one function j : A → B by taking j (a) = (k)a (let us note that
(k)a ∈ B since (e)(k)a = (k)a, by C 0

1) : indeed, if (k)a = (k)b, then (k)ax = (k)bx
for arbitrary x ∈ A, which implies a = b.
Let A′ ⊂ B be the range of this function. We want j to be an isomorphism of
applicative structures from A into B . This happens if and only if :
[(k)a](k)b = (k)(a)b for all a,b ∈ A. In other words, j is an isomorphism if and
only if A satisfies the following axiom :

(C2) ((S)(K)x)(K)y = (K)(x)y ;

this will be assumed from now on.
Notice that :
B is a proper extension of A′ (that is B ⊃ A′ and B 6= A′) if and only if A is non-
trivial (that is A has at least two elements). In that case, i ∈ B \A′ (where i = (s)kk
is the interpretation of I).
Indeed, if i ∈ A′, then i = (k)a, thus (i)b = (k)ab, that is to say b = a, for ev-
ery b ∈ A, and A is trivial. Conversely, if A contains only one element, then,
obviously, A = B = A′.
The interpretations of K ,S in B are the same as in A′, namely : (k)k and (k)s. B
satisfies C0 if and only if :

i) [[(k)k](e)a](e)b = (e)a and
ii) [[[(k)s](e)a](e)b](e)c = [[(e)a](e)c][(e)b](e)c

for all a,b,c ∈ A.
(i) can be written ((s)((s)(k)k)(e)a)(e)b = (e)a. Now consider the axiom :

102 Lambda-calculus, types and models

(C3) ((S)((S)(K)K)x)y = (E)x.

It implies (i) since, by proposition 6.5, we have C0 +C 0
1 ` (E)(E)x = (E)x.

C3 is equivalent, modulo C0, to :

(C ′
3) ((S)((S)(K)K)x)y =λz(x)z.

(ii) can be written :
((s)((s)((s)(k)s)(e)a)(e)b)(e)c = ((s)((s)(e)a)(e)c)((s)(e)b)(e)c.

Now consider the axiom :

(C4) ((S)((S)((S)(K)S)x)y)z = ((S)((S)x)z)((S)y)z.

At this point, we have proved the first part of :

Lemma 6.9. Let A be a combinatory algebra satisfying C0 +C 0
1 +C2 +C3 +C4.

Then B is an extension of A′ (a combinatory algebra, isomorphic with A) which
satisfies C0. Moreover, if a ∈ A, then [ka]i = (e)a.

Indeed, we have [ka]i = ((s)(k)a)i = (e)a (by proposition 6.4).
Q.E.D.

Let t ,u be two terms of L , and {x1, . . . , xn} the set of variables occurring in t or
u. The formula t = u (in fact, its closure∀x1 . . .∀xn{t = u}) is called an equation ;
this equation is said to be closed if both t and u contain no variables (n = 0) ; the
equation λx1 . . .λxn t =λx1 . . .λxn u will be called the λ-closure of the equation
t = u.
For each axiom Ci (2 ≤ i ≤ 4), let C Li denote its λ-closure, that is to say :

(C L2) λxλy((S)(K)x)(K)y =λxλy(K)(x)y
(C L3) λxλy((S)((S)(K)K)x)y =λxλyλz(x)z
(C L4) λxλyλz((S)((S)((S)(K)S)x)y)z =λxλyλz((S)((S)x)z)((S)y)z.

Proposition 6.10. Let A be a combinatory algebra, and Q a set of closed equa-
tions such that C0 +Q `C 0

1 . If A |=C0 +Q +C L2 +C L3 +C L4, then there exist an
extension A1 of A satisfying the same axioms, and an element ξ1 ∈ A1 such that,
for all a,b ∈ A : (a)ξ1 = (b)ξ1 ⇒ (e)a = (e)b.

Indeed, C0 +C Li ` Ci (proposition 6.1), thus A |= C0 +C 0
1 +C2 +C3 +C4. By

lemma 6.9, there exists an extension B of A′ satisfying C0. Since A |= C Li and
A |=Q, and C Li and Q are closed equations, we have B |=C Li et B |=Q. Now j
is an isomorphism from A onto A′, and hence there exist an extension A1 of A
and an isomorphism J from A1 onto B extending j . Let ξ1 = J−1(i) ; for every
a,b ∈ A such that (a)ξ1 = (b)ξ1, we have [Ja]Jξ1 = [Jb]Jξ1, that is [ka]i = [kb]i ,
and therefore (e)a = (e)b, by lemma 6.9.

Q.E.D.

Chapter 6. Combinatory logic 103

Theorem 6.11. Let A be a combinatory algebra, and Q a set of closed equations
such that C0 +Q `C 0

1 . Then there exists an extension A∗ of A satisfying C0 +Q+
Wext if and only if A |=C0 +Q +C L2 +C L3 +C L4.

First, notice that the systems of axioms C0 +Q+ Wext and C0 +Q+ WEXT are
equivalent (since C0+Q `C 0

1 , and C0+C 0
1 ` Wext ⇔ WEXT). We shall denote by

Q this system of axioms.

The condition is necessary : it suffices to prove that Q ` C Li (2 ≤ i ≤ 4). By
definition of the axiom scheme WEXT, we have WEXT ` Ci ⇒ C Li , thus it is
enough to prove : Q `Ci . We have :

C0 ` (((S)(K)x)(K)y)z = ((K x)z)(K y)z = (x)y ;
thus C0 ` (((S)(K)x)(K)y)z = ((K)(x)y)z. By weak extensionality, it follows that
Q ` (E)((S)(K)x)(K)y = (E)(K)(x)y , and then, by C 0

1 , that :
Q ` ((S)(K)x)(K)y = (K)(x)y ; therefore Q `C2.
The equation (C3) is written ((S)((S)(K)K)x)y = (E)x. Now we have
C0 ` (((S)((S)(K)K)x)y)z = ((((S)(K)K)x)z)(y)z = (((K)K z)(x)z)(y)z

= ((K)(x)z)(y)z = (x)z.
Hence C0+ Wext ` (E)((S)((S)(K)K)x)y = (E)x.
Thus C0 +C 0

1+ Wext ` ((S)((S)(K)K)x)y = (E)x, that is to say Q `C3.
The axiom (C4) is written ((S)((S)((S)(K)S)x)y)z = ((S)((S)x)z)((S)y)z.
Now we have
C0 ` (((S)((S)((S)(K)S)x)y)z)a = {[((S)((S)(K)S)x)y]a}(z)a

= {[(((S)(K)S)x)a](y)a}(z)a = {[(((K)S)a)(x)a](y)a}(z)a
= {[(S)(x)a](y)a}(z)a = (((x)a)(z)a)((y)a)(z)a.

On the other hand :
C0 ` (((S)((S)x)z)((S)y)z)a = ((S)xza)(S)y za = (((x)a)(z)a)((y)a)(z)a.
Therefore, C0 ` (((S)((S)((S)(K)S)x)y)z)a = (((S)((S)x)z)((S)y)z)a.
Thus C0+ Wext ` (E)((S)((S)((S)(K)S)x)y)z = (E)((S)((S)x)z)((S)y)z.
It follows that
C0 +C 0

1+ Wext ` ((S)((S)((S)(K)S)x)y)z = ((S)((S)x)z)((S)y)z ;
that is to say Q `C4.

The condition is sufficient : Let A be a model of C0 +Q +C L2 +C L3 +C L4.
By proposition 6.10, we may define an increasing sequence :
A = A0 ⊂ A1 ⊂ . . . ⊂ An ⊂ . . . of combinatory algebras which satisfy the same ax-
ioms, and such that, for each n, there exists ξn+1 ∈ An+1 such that :
if a,b ∈ An and (a)ξn+1 = (b)ξn+1, then (e)a = (e)b.
Let A∗ =∪n An . Then A∗ |=C0+Q+C Li (2 ≤ i ≤ 4) as well as the weak extension-
ality axiom : if a,b ∈ A∗ and (a)x = (b)x for every x ∈ A∗, then we have a,b ∈ An

for some n ; hence (a)ξn+1 = (b)ξn+1 and therefore (e)a = (e)b.
Q.E.D.

104 Lambda-calculus, types and models

Intuitively, the extension of A constructed here is obtained by adding infinitely
many “ variables ” which are the ξn ’s.

Now we consider the system of axioms :

(C L=) C0 +C1 +C L2 +C L3 +C L4.

Theorem 6.12. Let A be a combinatory algebra. Then there exists an extension
of A satisfying C L if and only if A satisfies C L=.

It suffices to apply theorem 6.11, where Q is taken as the system of axioms C1.
Q.E.D.

Corollary 6.13. The universal consequences of C L are those of C L=.

Indeed, let A be a model of C L= , and F a universal formula which is a conse-
quence of C L (see chapter 9). We need to prove that A |= F . By theorem 6.12,
A can be embedded in some model B of C L. Thus B |= F and, since F is univer-
sal and A is a submodel of B , we deduce that A |= F .
Conversely, it follows from theorem 6.12 that every model of C L is a model of
C L= .

Q.E.D.

We now consider the axiom :

(C L5) E = I

that is to say (by definition of E) :

(C L5) λx((S)(K)x)I = I .

Clearly, C0 +C L5 `C 0
1 . Moreover, C3 is obviously equivalent, modulo C0 +C L5,

to :

(C ′′
3) ((S)((S)(K)K)x)y = x.

Let C L′′
3 denote the λ-closure of C ′′

3 , that is to say :

(C L′′
3) λxλy((S)((S)(K)K)x)y =λxλy x.

We also define the following system of axioms EC L= :

(EC L=) C0 +C L2 +C L′′
3 +C L4 +C L5.

Theorem 6.14. Let A be a combinatory algebra. Then there exists an extension
of A satisfying EC L if and only if A satisfies EC L= .

This follows immediately from theorem 6.11, where Q is taken as the axiom
E = I .

Q.E.D.

Corollary 6.15. The universal consequences of EC L are those of EC L=.

Chapter 6. Combinatory logic 105

Let A be a model of L . The diagram of A, denoted by D A , is defined as the set
of all formulas of the form t = u or t 6= u which hold in A, t and u being arbitrary
closed terms with parameters in A. The models of D A are those models of L

which are extensions of A.

Theorem 6.16. Let A be a model of C L= , and t ,u two terms with parameters in
A (and variables). Then :
i) if D A +C0 ` t = u, then D A +C0 `λx t =λx u ;
ii) if D A +C0 ` (t)x = (u)x, where x is a variable which does not occur in t ,u,
then D A +C0 ` (E)t = (E)u.

D A +C0 ` F means : every extension of A satisfying C0 satisfies F .

Proof of (i) : let B be an extension of A satisfying C0. Then B satisfies C L= and,
by theorem 6.12, there exists an extension B ′ of B which satisfies C L. By hypoth-
esis, we have D A +C0 ` t = u, and hence B ′ |= t = u ; by weak extensionality, it
follows that :
B ′ |=λx t =λx u ; therefore, B |=λx t =λx u.
Same proof for (ii).

Q.E.D.

A similar proof yields the following theorem :

Theorem 6.17. Let A be a model of EC L= , and t ,u two terms with parameters
in A where x does not occur. If D A +C0 ` (t)x = (u)x, then D A +C0 ` t = u.

4. Translation of λ-calculus

We define a model M0 of L , called “ model over λ-terms ”, as follows :
the domain M0 is the quotient setΛ/'β ;
the constant symbols K ,S are respectively interpreted by the (equivalence clas-
ses of) λ-terms λxλy x and λxλyλz((x)z)(y)z ;
the function symbol Ap is interpreted by the function u, t 7→ (u)t from M0×M0

to M0.

Lemma 6.18. M0 is a model of C L. For every term t ∈Λ, we have (E)t 'β λx(t)x,
where x is any variable which does not occur free in t .

Here we will only use the definition of β-equivalence, not its properties shown
in chapter 1.
We first prove that M0 |=C0 :
that is to say that (K)uv 'β u and (S)uv w 'β ((u)w)(v)w for all u, v, w ∈ Λ,
which is clear in view of the interpretations of K and S.

106 Lambda-calculus, types and models

Now we come to the second part of the lemma : since M0 |= C0, we have, by
proposition 6.4 : (E)t = ((S)(K)t)I , with I = (S)K K .
Looking again to the interpretations of K and S in M0, we obtain easily :
I 'β λx x, and then ((S)(K)t)I 'β λx(t)x, which gives the desired result.
Then we prove that M0 |= Wext : suppose that M0 |= ∀x[(t)x = (u)x], with
t ,u ∈ Λ/'β. Take a variable x which does not occur in t ,u ; then (t)x 'β (u)x,
and therefore λx(t)x 'β λx(u)x. Now we have seen that λx(t)x 'β (E)t and
λx(u)x 'β (E)u. Thus (E)t 'β (E)u and hence M0 |= (E)t = (E)u.

Finally, we show that M0 is a model of C ′
1, in other words, of the formulas :

(E)K = K ; (E)(K)x = (K)x ;
(E)S = S ; (E)(S)x = (S)x ; (E)(S)x y = (S)x y .

So we need to prove that
(E)K 'β K ; (E)(K)x 'β (K)x ;

(E)S 'β S ; (E)(S)x 'β (S)x ; (E)(S)x y 'β (S)x y .
We have seen that (E)t 'β λz(t)z, where z does not occur in t . Thus it remains
to prove that : λx(K)x 'β K ; λy(K)x y 'β (K)x ; λx(S)x 'β S ; λy(S)x y 'β
(S)x ; λz(S)x y z 'β (S)x y . Now all these equivalences are trivial, in view of the
interpretations of K and S in M0.

Q.E.D.

We define similarly a model M1 of L , over the domain M1 = Λ/'βη (the quo-
tient set ofΛ by the βη-equivalence relation) ;
again, the constant symbols K and S are interpreted by the (equivalence classes
of) terms λxλy x and λxλyλz((x)z)(y)z, and the function symbol Ap is inter-
preted by the function u, t 7→ (u)t from M1 ×M1 to M1.

Lemma 6.19. M1 is a model of EC L.

We only prove that M1 |= Ext (the other axioms are checked as above). Let
t ,u ∈ Λ/'βη be such that M1 |= ∀x[(t)x = (u)x]. Take a variable x not occur-
ring in t ,u : we have (t)x 'βη (u)x, thus λx(t)x 'βη λx(u)x, and hence t 'βη u.
Therefore M1 |= t = u.

Q.E.D.

Recall that a combinatory algebra A (that is a model of C0) is trivial if it contains
only one element. Actually, A is trivial if and only if it is a model of the axiom
0 = 1, where 0 ≡ λxλy y ≡ (K)I and 1 ≡ λxλy x = (E)K : indeed, if A |= 0 = 1,
then, for all a,b ∈ A, we have A |= (0)ab = (1)ab, thus A |= b = a, and hence A
has only one element.
The axiom 0 = 1 is equivalent to K = S : indeed, from K = S, we deduce :
(K)abc = (S)abc, thus (a)c = ((a)c)(b)c for all a,b,c ∈ A.
Taking a = (K)I , b = (K)d , we obtain I = d for every d ∈ A, and therefore A is
trivial.

Chapter 6. Combinatory logic 107

Theorem 6.20. C L and EC L have a non-trivial model, and are not equivalent
theories.

We have seen that M1 |= EC L, thus both C L and EC L have a non-trivial model
(to make sure that M1 is not trivial, notice, for instance, that two distinct vari-
ables of the λ-calculus may not be βη-equivalent, according to the Church-
Rosser property for βη).
On the other hand, M0 is a model of C L, but not of EC L : indeed, let ξ,ζ ∈ Λ
be such that ξ is a variable of the λ-calculus and ζ= λx(ξ)x, where x 6= ξ. Then
(ξ)t 'β (ζ)t and hence M0 |= (ξ)t = (ζ)t for every t ∈ Λ. Now ξ and ζ are not
β-equivalent and therefore M0 |= ξ 6= ζ.

Q.E.D.

For every λ-term t , we define, inductively, a term tL of the language of combi-
natory logic :

if t is a variable, then tL = t (by convention, we identify variables of the
λ-calculus and variables of the language L) ;

if t = (u)v , then tL = (uL)vL ;
if t =λx u, then tL =λx uL .

Notice that the symbol λ is used here in two different ways : on the one hand in
the λ-terms, and on the other hand in the terms of L .

Conversely, with each term t of the language L , we associate a λ-term tΛ, de-
fined by induction on t :

KΛ =λxλy x ; SΛ =λxλyλz((x)z)(y)z ;
if t = (u)v , then tΛ = (uΛ)vΛ.

Clearly, for every term t of L (with or without variables), tΛ is the value of t
in both models M0 and M1, when each variable of L is interpreted by itself
(considered as an element ofΛ). Therefore :

Lemma 6.21. Let t ,u be two terms of L . If C L ` t = u, then tΛ 'β uΛ ;
if EC L ` t = u, then tΛ 'βη uΛ.

Lemma 6.22. For every λ-term t, tLΛ 'β t .

The proof is by induction on t . This is obvious in case t is a variable or t = (u)v .
Suppose that t = λx u ; then tL = λx uL . Therefore, C L ` (tL)x = uL (propo-
sition 6.1). Thus, by lemma 6.21, we have (tLΛ)x 'β uLΛ and, by induction
hypothesis, uLΛ 'β u. It follows that (tLΛ)x 'β u, and hence :
λx(tLΛ)x 'β λx u = t .
Now tL =λx uL , and hence C L ` (E)tL = tL (proposition 6.5).
Thus, by lemma 6.21, we have (E)tLΛ 'β tLΛ.

108 Lambda-calculus, types and models

On the other hand, by lemma 6.18, (E)tLΛ 'β λx(tLΛ)x. It follows, finally, that
tLΛ 'β λx(tLΛ)x 'β t .

Q.E.D.

Lemma 6.23. For every term t of L , C L ` tΛL = t .

The proof is by induction on t . This is immediate whenever t is a variable or
t = (u)v . It remains to examine the cases where t = K or t = S.
If t = K , then KΛ =λxλy x (λ-term), thus KΛL =λxλy x (term of L).
Now C L ` K x y = x (axioms C0), and hence (by weak extensionality) :

C L `λxλy(K)x y =λxλy x = KΛL .
Since C L ` K =λxλy(K)x y (axioms C1), it follows that C L ` K = KΛL .
If t = S, then SΛL =λxλyλz((x)z)(y)z (term of L).
Now C L ` (S)x y z = ((x)z)(y)z, thus, by weak extensionality :

C L `λxλyλz(S)x y z =λxλyλz((x)z)(y)z = SΛL .
On the other hand :
C L ` S =λxλyλz(S)x y z (axioms C1), and therefore C L ` S = SΛL .

Q.E.D.

Lemma 6.24. Let t ,u ∈Λ and v = u[t/x]. Then C L ` vL = uL [tL /x].

The proof is by induction on u. This is immediate whenever u is a variable or
u = (u1)u2. Suppose that u =λy u′ ; then, we have v =λy v ′, where v ′ = u′[t/x].
Thus, by induction hypothesis, C L ` v ′

L
= u′

L
[tL /x]. Now vL = λy v ′

L
and

hence :
C L ` (vL)y = u′

L
[tL /x] (proposition 6.1).

But we also have uL = λy u′
L

, and therefore C L ` (uL)y = u′
L

. It follows
that C L ` (uL [tL /x])y = u′

L
[tL /x], and hence C L ` (uL [tL /x])y = (vL)y . By

weak extensionality, we obtain C L ` (E)vL = (E)uL [tL /x].
Now vL =λy v ′

L
, uL =λy u′

L
, and therefore :

C L ` (E)vL = vL and C L ` (E)uL = uL (proposition 6.5) ;
thus C L ` (E)uL [tL /x] = uL [tL /x]. Finally, we have C L ` vL = uL [tL /x].

Q.E.D.

Theorem 6.25. Let t ,u be two λ-terms. Then :
i) t 'β u if and only if C L ` tL = uL .
ii) t 'βη u if and only if EC L ` tL = uL .

This theorem means that the β (resp. the βη)-equivalence is represented by the
notion of consequence in C L (resp. EC L).

Proof of (i) : If C L ` tL = uL , then tLΛ 'β uLΛ by lemma 6.21, thus t 'β u by
lemma 6.22.

Chapter 6. Combinatory logic 109

Conversely, suppose that t 'β u. To prove that C L ` tL = uL , we may suppose
that t β0 u (that is to say : u is obtained from t by contracting one redex). The
proof is then by induction on t ; t may not be a variable (there is no redex in a
variable).
If t = λx t ′, then u = λx u′ with t ′β0 u′. Thus C L ` t ′

L
= u′

L
(induction hypoth-

esis) and, by weak extensionality, we have C L ` λx t ′
L

= λx u′
L

, that is to say
C L ` tL = uL .
If t = (t ′)t ′′, then there are three possible cases for u :

u = (u′)t ′′, with t ′β0 u′ ; then C L ` t ′
L

= u′
L

(induction hypothesis), and
therefore C L ` (t ′

L
)t ′′

L
= (u′

L
)t ′′

L
, that is to say C L ` tL = uL .

u = (t ′)u′′, with t ′′β0u′′ ; same proof.
t = (λx t ′)t ′′ and u = t ′[t ′′/x]. By lemma 6.24, C L ` uL = t ′

L
[t ′′

L
/x] ; on the

other hand, we have tL = (λx t ′
L

)t ′′
L

and hence C L ` tL = t ′
L

[t ′′
L

/x] (proposi-
tion 6.1). Thus C L ` tL = uL .

Proof of (ii) : If EC L ` tL = uL , then tLΛ 'βη uLΛ by lemma 6.21, thus t 'βη u
by lemma 6.22.
Conversely, suppose that t 'βη u. To prove that EC L ` tL = uL , we may sup-
pose that t β0 u or t η0 u. If t β0 u, we obtain the desired result in view of (i).
If t η0 u, the proof proceeds by induction on t (which may not be a variable) ; if
t = (t ′)t ′′, then u = (u′)t ′′ or u = (t ′)u′′, with t ′η0 u′ or t ′′η0 u′′. Thus the result
follows from the induction hypothesis.
If t =λx t ′, there are two possible cases for u :

u =λx u′, with t ′η0 u′. By induction hypothesis, EC L ` t ′
L

= u′
L

;
it follows, by weak extensionality, that EC L ` λx t ′

L
= λx u′

L
, that is to say

EC L ` tL = uL .
t =λx(u)x, x having no occurrence in u ; then tL =λx(uL)x, and therefore,

by proposition 6.1, EC L ` (tL)x = (uL)x. Using extensionality (since x does
not occur free in t ,u), we conclude that EC L ` tL = uL .

Q.E.D.

There is a “ canonical ” method for constructing a model of C L (resp. EC L) : let
T be the set of all terms of L (with variables). We define on T an equivalence
relation ∼0 (resp. ∼1) by taking :
t ∼0 u ⇔C L ` t = u (resp. t ∼1 u ⇔ EC L ` t = u).
Then we have a model N0 of C L (resp. a model N1 of EC L) over the domain
T /∼0 (resp. T /∼1) where the symbols K , S, Ap have obvious interpretations
(take the canonical definition on the set of terms and then pass to the quotient
set).
We now prove, for example, that N0 |=C L :
For those axioms of C L which are equations, the proof is immediate :
for instance, the axiom (K)x y = x holds since, for all terms t ,u of L , we have

110 Lambda-calculus, types and models

C L ` (K)tu = t , and thus, by definition of N0, N0 |= (K)tu = t .
It remains to check the weak extensionality axiom. Therefore, let t ,u ∈ N0 be
such that N0 |= (t)x = (u)x for every x ∈N0. Take x as a variable which does not
occur in t ,u. Then, by definition of N0 :
C L ` (t)x = (u)x, thus C L ` (E)t = (E)u, and hence N0 |= (E)t = (E)u, which is
the desired conclusion.

Proposition 6.26. M0 and N0 (resp. M1 and N1) are isomorphic models.

Consider the mapping t 7→ tL ofΛ into T ; we know from theorem 6.25 that :
t 'β u ⇔C L ` tL = uL ; that is to say : M0 |= t = u ⇔N0 |= tL = uL . Therefore,
this mapping induces an isomorphism from M0 into N0.
Now consider the mapping t 7→ tΛ of T intoΛ. By lemma 6.21, we have :
N0 |= t = u ⇒ M0 |= tΛ = uΛ. Therefore, this mapping induces a homomor-
phism from N0 into M0. According to lemmas 6.22 and 6.23, these are inverse
homomorphisms.
The proof is similar for M1 and N1.

Q.E.D.

Theorem 6.27. Let t , t ′ be two normalizable closed λ-terms which are not βη-
equivalent. Then EC L ` tL = t ′

L
↔ 0 = 1.

In other words, the theory EC L + tL = t ′
L

has no other model than the trivial
one.

The proof is as follows :
We have seen that EC L ` 0 = 1 →∀x∀y{x = y} ; thus EC L ` 0 = 1 → tL = t ′

L
.

Conversely, since t and t ′ are normalizable closed terms which are not βη-
equivalent, in view of Böhm’s theorem (theorem 5.2), there exist closed terms
t 1, . . . , t n ∈ Λ such that (t)t 1 . . . t n 'βη 0 and (t ′)t 1 . . . t n 'βη 1. It then follows
from theorem 6.25 that :
EC L ` (tL)t 1

L
. . . t n

L
= 0 and EC L ` (t ′

L
)t 1

L
. . . t n

L
= 1. Therefore :

EC L ` tL = t ′
L

→ 0 = 1.
Q.E.D.

References for chapter 6

[Bar84], [Cur58], [Hin86].
(The references are in the bibliography at the end of the book).

Chapter 7

Models of lambda-calculus

1. Functional models

Given a set D, let F (D) denote the set of all functions from DN into D which
depend only on a finite number of coordinates ; for every i ≥ 0, the i -th coordi-
nate function will be denoted by xi+1. Therefore, any member of F (D) may be
denoted by f (x1, . . . , xn), for every large enough integer n.
For any two functions f (x1, . . . , xn), g (x1, . . . , xp) in F (D), we will denote the
function f (x1, . . . , xi−1, g (x1, . . . , xp), xi+1, . . . , xn) ∈F (D) by f [g /xi].
Clearly, if f does not depend on the coordinate xi , then f [g /xi] = f .

Let us consider a subset F of DD and two functionsΦ : D →F , andΨ : F →D.

For all a,b ∈D, define (a)b to beΦ(a)(b) (so D is an applicative structure).
For every f ∈F ,Ψ(f) will also be denoted by λx f (x).

Let f , g ∈F (D), f = f (x1, . . . , xn), and g = g (x1, . . . , xn). We define (f)g ∈F (D),
by taking [(f)g](a1, . . . , an) = (f (a1, . . . , an))g (a1, . . . , an), for all a1, . . . , an ∈D.

We now consider a subset F∞ of F (D) such that :

0. If f ∈F∞, f = f (x1, . . . , xn), and a1, . . . , ai−1, ai+1, . . . , an ∈D, then
f (a1, . . . , ai−1, x, ai+1, . . . , an) ∈F (1 ≤ i ≤ n).

For each f ∈ F∞, f = f (x1, . . . , xn), and for each coordinate xi , let us define
λxi f ∈F (D) to be the function g (x1, . . . , xi−1, xi+1, . . . , xn) such that :
g (a1, . . . , ai−1, ai+1, . . . , an) =λx f (a1, . . . , ai−1, x, ai+1, . . . , an)
for all a1, . . . , ai−1, ai+1, . . . , an ∈D.
Thus λxi f does not depend on the coordinate xi .

We now suppose that the following conditions hold :

1. Every coordinate function xi is in F∞ ;
2. If f , g ∈F∞, then (f)g ∈F∞.
3. If f ∈F∞, then λxi f ∈F∞ for every i .

111

112 Lambda-calculus, types and models

Sets D,F ,F∞, and functionsΦ andΨ satisfying conditions 0, 1, 2, 3 form what
we will call a functional model of λ-calculus.

Lemma 7.1.
Let f ,h ∈ F∞, x, y be two distinct coordinate functions, and g = λy h. Then
λy h[f /x] = g [f /x] provided that f does not depend on y.
In particular, λy h[z/x] = g [z/x] for every coordinate z 6= y.

Let f = f (x1, . . . , xn , x), h = h(x1, . . . , xn , x, y) ; for all a1, . . . , an ,b ∈ D, we have
λy h(a1, . . . , an ,b, y) = g (a1, . . . , an ,b).
In particular, if b = f (a1, . . . , an , a), this gives :
λy h(a1, . . . , an , f (a1, . . . , an , a), y) = g (a1, . . . , an , f (a1, . . . , an , a))
which is the desired result.

Q.E.D.

Lemma 7.2. Let f ∈ F∞, and x, y be two distinct coordinates. If f does not
depend on y, then λy f [y/x] =λx f .

If f = f [x1, . . . , xn , x], then f [y/x] = f [x1, . . . , xn , y], which gives the result.
Q.E.D.

We now define a mapping of the set L of λ-terms into F∞, denoted by
t 7→ ‖t‖. We assume that the variables of the λ-calculus are x1, . . . , xn , . . . The
definition is by induction on t :

• if t is the variable xi , then ‖t‖ is the coordinate function xi ;
• if t = (u)v , then ‖t‖ = (‖u‖)‖v‖ ;
• if t =λx u, then ‖t‖ =λx‖u‖.

Clearly, if the free variables of t are among x1, . . . , xk , then the function ‖t‖ ∈F∞

depends only on the coordinates x1, . . . , xk .

Lemma 7.3. Let t be a λ-term, and f = ‖t‖ ; then ‖t<z/x>‖ = f [z/x] for all
variables z except a finite number.

From now on, we will use the expression : “ for almost all variables z ” as an
abbreviation for : “ for all variables z except a finite number ”.

The proof is by induction on t ; the result is immediate if t is a variable, or
t = (u)v , or t =λx u.
Suppose t =λy u, where y 6= x, and let g = ‖u‖ ; then f =λy g . Now
‖t<z/x>‖ = ‖λy u<z/x>‖ = λy‖u<z/x>‖ = λy g [z/x] for almost all variables
z, by induction hypothesis. By lemma 7.1, we have λy g [z/x] = f [z/x] for al-
most all z ; this completes the proof.

Q.E.D.

Chapter 7. Models of lambda-calculus 113

Proposition 7.4.
Let t , t ′ be two λ-terms. If t ≡ t ′ (t is α-equivalent to t ′), then ‖t‖ = ‖t ′‖.

Proof by induction on t ; the result is immediate if t is a variable, or t = (u)v .
If t = λx u, then t ′ = λx ′u′ and u<z/x> ≡ u′<z/x ′> for almost all variables
z. Hence, by induction hypothesis, ‖u<z/x>‖ = ‖u′<z/x ′>‖. Let g = ‖u‖,
g ′ = ‖u′‖ ; then ‖t‖ =λx g and ‖t ′‖ =λx ′g ′.
By lemma 7.3, we have ‖u<z/x>‖ = g [z/x] and ‖u′<z/x ′>‖ = g ′[z/x ′] for al-
most all variables z. Thus g [z/x] = g ′[z/x ′], and therefore :
λz g [z/x] =λz g ′[z/x ′] for almost all variables z.
Hence, by lemma 7.2, λx g =λx ′g ′, that is ‖t‖ = ‖t ′‖.

Q.E.D.

Therefore, we may consider t 7→ ‖t‖ as a mapping ofΛ into F∞.

Proposition 7.5.
Let t ,u ∈Λ, and f = ‖t‖, g = ‖u‖. Then ‖u[t/x]‖ = g [f /x].

Proof by induction on u ; this is immediate whenever u is a variable or u = (v)w .
If u =λy v , then take y not free in t (thus f does not depend on the coordinate
y), and let ‖v‖ = h. Then ‖u[t/x]‖ = ‖λy v[t/x]‖ = λy‖v[t/x]‖ = λy h[f /x] (by
induction hypothesis). Now, by definition of ‖u‖, we have g = λy h. Therefore,
by lemma 7.1, λy h[f /x] = g [f /x].

Q.E.D.

Now consider the following assumption :

(β) Φ◦Ψ is the identity function on F

in other words :

(β) (λx f (x))a = f (a) for all a ∈D and f ∈F .

Under this assumption, f 7→λx f is obviously a one-one mapping of F into D.

Any functional model satisfying (β) will be called a functional β-model.

Lemma 7.6. In any β-model, we have (λx g) f = g [f /x], for every coordinate x
and all f , g ∈F∞.

Let f = f [x1, . . . , xn , x], g = g [x1, . . . , xn , x] and λx g = g ′[x1, . . . , xn]. By (β), we
have (g ′[a1, . . . , an])b = g [a1, . . . , an ,b], for all a1, . . . , an ,b ∈D.
Thus, by taking b = f [a1, . . . , an , a], we obtain :

(g ′[a1, . . . , an]) f [a1, . . . , an , a] = g [a1, . . . , an , f [a1, . . . , an , a]]
which yields the result.

Q.E.D.

The following proposition explains the name “ β-model ”.

Proposition 7.7. In any β-model, if t , t ′ ∈Λ and t 'β t ′, then ‖t‖ = ‖t ′‖.

114 Lambda-calculus, types and models

We may suppose that t β0 t ′ (t ′ is obtained from t by one single β-reduction).
The proof is by induction on t ; t is not a variable (if it were, no β-reduction
could be made on it).
If t = λx u, then t ′ = λx u′, with uβ0 u′ ; by induction hypothesis, ‖u‖ = ‖u′‖,
thus λx‖u‖ =λx‖u′‖, that is to say ‖t‖ = ‖t ′‖.
If t = (u)v , then there are three possible cases for t ′ :

t ′ = (u′)v with uβ0 u′ ; then ‖u‖ = ‖u′‖, by induction hypothesis, and there-
fore (‖u‖)‖v‖ = (‖u′‖)‖v‖, that is ‖t‖ = ‖t ′‖.

t ′ = (u)v ′ with v β0 v ′ ; same proof.
t = (λx v)u and t ′ = v[u/x] ; let f = ‖u‖, g = ‖v‖ ; then ‖t‖ = (λx g) f and

‖t ′‖ = g [f /x] (proposition 7.5). Thus ‖t‖ = ‖t ′‖ by lemma 7.6.
Q.E.D.

Proposition 7.8. Everyβ-model is a model of the Scott-Meyer axioms (and hence
it provides a model of CL, see chapter 6, pages 98-99).

We define a model of the Scott-Meyer axioms, where the domain is D, Ap is
the function (a,b) 7→ (a)b from D ×D to D, e = λxλy(x)y , k = λxλy x, and
s =λxλyλz((x)z)(y)z.
Indeed, it is obvious from condition β that (k)x y = x, (s)x y z = (xz)y z and
(e)x y = (x)y . In order to check the weak extensionality axiom, suppose that
(a)x = (b)x for all x ∈ D ; define f [x, y] ∈ F∞ by taking f [x, y] = (x)y (condi-
tions 1, 2 of the definition of functional models). By definition of F , both func-
tions x 7→ (a)x and x 7→ (b)x are in F ; now they are assumed to be equal, and
hence λx(a)x =λx(b)x. Moreover, by definition of e, according to condition β,
we have (e)a =λx(a)x, (e)b =λx(b)x. Thus (e)a = (e)b.

Q.E.D.

A β-model is called trivial if it has only one element. A non-trivial β-model is
necessarily infinite, since it is a model of the Scott-Meyer axioms, and hence a
combinatory algebra (cf. proposition 6.2).

Remark. All functions of F∞ used in the proof of proposition 7.8 have at most three
arguments. Therefore, a model of the Scott-Meyer axioms can be obtained whenever
the following elements are given :

• an applicative structure D ; thus we have a function a,b 7→ (a)b from D×D to D.
• a set F 3 of functions from D×D×D to D, such that :

the three coordinate functions are in F 3 ;
whenever f , g ∈F 3, then (f)g ∈F 3 ;

• a function f 7→λx f from F to D such that (λx f)a = f (a) for all f ∈F and a ∈D ;
here F is defined as the set of functions from D to D obtained by replacing, in every
function of F 3, two of the three variables by arbitrary elements of D ;

• it is assumed that, whenever f (x1, x2, x3) ∈F 3, then λxi f ∈F 3 (i = 1,2,3).

Chapter 7. Models of lambda-calculus 115

Consider a β-model (D,F ,F∞) ; we may define another model of the Scott-
Meyer axioms, over the domain F∞, where Ap is the function f , g 7→ (f)g , and
e =λxλy(x)y , k =λxλy x, s =λxλyλz(xz)(y)z.
Indeed, by lemma 7.6, we have : (k) f g = f , (s) f g h = (f h)g h, (e) f g = (f)g , for
all f , g ,h ∈F∞.
We now check the weak extensionality axiom : suppose that (f)h = (g)h for all
h ∈F∞ ; take h as any coordinate function x, on which f and g do not depend.
Then we have (f)x = (g)x, thus λx(f)x = λx(g)x. It follows that (e) f = (e)g
because, from the definition of e and lemma 7.6, we have (e) f = λx(f)x and
(e)g =λx(g)x.

Proposition 7.9. Let (D,F ,F∞) be a β-model ; then the following conditions
are equivalent :
i) the extensionality axiom is satisfied in the model D ;
ii) f →λx f is a mapping of F onto D (thus it is one-to-one) ;
iii) λx(a)x = a for every a ∈D.
iv)Ψ◦Φ is the identity function on D.
If these conditions hold, then the β-model under consideration is said to be ex-
tensional.

(iii) ⇒ (ii) is obvious.
(i) ⇒ (iii) : for every b ∈ D, we have (a)b = (a′)b, where a′ = λx(a)x (by condi-
tion β). Therefore, a = a′ by extensionality.
(ii) ⇒ (i) : let a,b ∈ D be such that (a)c = (b)c for every c ∈ D ; by hypothesis,
there exist f , g ∈ D such that a = λx f , b = λx g . Therefore (λx f)c = (λx g)c,
and hence f (c) = g (c) (by β) for every c ∈D.
Thus f = g , and therefore λx f =λx g and a = b.
Finally (ii) ⇔ (iv) : indeed, condition (ii) means that Ψ is one-to-one ; since we
know that Φ◦Ψ is the identity function on F , we see that Ψ◦Φ is the identity
function on D.

Q.E.D.

Remark. Conversely, every model D of the Scott-Meyer axioms can be obtained from a
functional β-model : take F as the set of functions of the form x 7→ (a)x, where a ∈D,
and F∞ as the set of functions of the form t [x1, . . . , xk], where t is a term of L written
with the indicated variables.
For all a2, . . . , ak , there exists a ∈ D such that t [x, a2, . . . , ak] = (a)x (combinatory com-
pleteness of D). Thus condition 0 of the definition of functional models is satisfied.
Clearly, conditions 1 and 2 also hold.
Let f ∈ F be such that f (x) = (a)x ; define λx f (x) = (e)a. This is a correct definition :
indeed, if f (x) = (a′)x, then (e)a = (e)a′, by weak extensionality.
Condition β is satisfied : (λx f (x))c = (e)ac = (a)c = f (c).

116 Lambda-calculus, types and models

Finally, we check that condition 3 is satisfied : let f ∈ F∞ be defined by some term
t [x, x1, . . . , xk] of L ; consider the term u = λx t (here, and only here, λx is taken in
the sense of chapter 6), and let g ∈ F∞ be the corresponding function. Then we have
(u)x = t in D, and hence (g)x = f .
Thus (g (a1, . . . , ak))c = f (c, a1, . . . , ak) for all a1, . . . , ak ,c ∈D ; therefore, by definition :

λx f (x, a1, . . . , ak) = (e)g (a1, . . . , ak).

Thus we have λx f (x, x1, . . . , xk) = (e)g (x1, . . . , xk) and this function is defined by the

term (e)u, so it is in F∞.

2. Spaces of continuous increasing functions

We will say that an ordered set D is σ-complete if every increasing sequence
an(n ∈ N) of elements of D has a least upper bound. This least upper bound
will be denoted by supn an .
Let D, D′ be two σ-complete ordered sets, and f : D → D′ an increasing func-
tion. We will say that f isσ-continuous increasing (σ-c.i.) if, for every increasing
sequence (an) in D, we have f (supn an) = supn f (an).
Let D, D′, E be σ-complete ordered sets. We may define a structure of σ-
complete ordered set on the cartesian product D×D′, by putting :

(a,b) ≤ (a′,b′) ⇔ a ≤ a′ and b ≤ b′.
A function f : D×D′ → E isσ-continuous increasing if and only if it is separately
σ-continuous increasing (that is to say : for all a ∈ D and a′ ∈ D′, f (x, a′) and
f (a, x ′) are σ-c.i. functions).

The proof is immediate.

Let D, D′ be two σ-complete ordered sets. We may define a structure of σ-
complete ordered set on the set C (D,D′) of allσ-c.i. functions from D to D′, by
putting : f ≤ g ⇔ f (a) ≤ g (a) for every a ∈D.

If fn(n ∈N) is an increasing sequence in C (D,D′), its least upper bound is the
function f : D →D′ defined by f (a) = supn fn(a).
Indeed, f is clearly increasing ; we show that it is also σ-continuous :
let ak (k ∈N) be an increasing sequence in D, and a = supk ak .
Then f (a) = supn fn(a) = supn supk fn(ak) = supn,k fn(ak) = supk supn fn(ak) =
supk f (ak).

The next proposition provides a very useful method for constructing functional
β-models (and therefore models of combinatory logic).

Proposition 7.10.
The following data define a functional model of λ-calculus :

a σ-complete ordered set D ;

Chapter 7. Models of lambda-calculus 117

a σ-c.i. function Φ : D →C (D,D) ;
a σ-c.i. function Ψ : C (D,D) →D.

This model is a β-model if and only ifΦ◦Ψ= I d (on C (D,D)).
This β-model is extensional if and only if we have also : Ψ◦Φ = I d (on D). In
this case, for all a,b ∈D, a ≤ b if and only if (a)c ≤ (b)c for every c ∈D.

For all a,b ∈ D, define (a)b = Φ(a)(b) ; then D is an applicative structure, and
the function (a,b) 7→ (a)b from D ×D to D is σ-c.i. (obviously, it is separately
σ-c.i.).
Let F = C (D,D) and take F∞ as the set of all σ-c.i. functions from DN to D

which depend only on a finite number of coordinates. For every f ∈F , we put,
by definition, λx f (x) =Ψ(f).
It remains to check conditions 1, 2, 3 of the definition of functional models.
It is obvious that each coordinate xi is in F∞. If f , g ∈ F∞, then (f)g is σ-c.i.
(since (a,b) 7→ (a)b is σ-c.i.) and depends only on a finite number of coordi-
nates ; thus (f)g ∈F∞. Finally, let f (x, x1, . . . , xk) ∈F∞.
Then (a1, . . . , ak) 7→ f (x, a1, . . . , ak) is a σ-c.i. function from Dk to F .
Hence (a1, . . . , ak) 7→λx f (x, a1, . . . , ak) is σ-c.i. from Dk to D, which proves that
λx f ∈F∞.

The model obtained above is a β-model if and only if Φ◦Ψ = I d on C (D,D)
(by definition of β-models). This β-model is extensional if and only if we have,
also : Ψ◦Φ= I d on D (according to proposition 7.9.iv). Finally, if (a)c ≤ (b)c for
every c ∈ D, then Φ(a) ≤ Φ(b), thus Ψ(Φ(a)) ≤Ψ(Φ(b)), since Ψ is increasing,
and therefore a ≤ b.

Q.E.D.

3. Spaces of initial segments

Let D be a countable preordered set (recall that a preorder is a reflexive and
transitive binary relation), the preorder on D being denoted by ≤. A subset a of
D will be called an initial segment if, for all α ∈ a and β≤α, we have β ∈ a.
Let a ⊂ D ; the least initial segment containing a is denoted by ā ; it is the set of
lower bounds of the elements of a.
We will denote by S (D) the space of initial segments of D ; the inclusion rela-
tion makes of S (D) aσ-complete ordered set. The set of finite subsets of D will
be denoted by D∗.
On D∗, we define a preorder, still denoted by ≤, by putting :

a ≤ b ⇔ ā ⊂ b̄ ⇔ every member of a is a lower bound of an element of b.

Consider two countable preordered sets D and E ; let D =S (D), E =S (E).

118 Lambda-calculus, types and models

For every f ∈ C (D,E), we define the trace of f , denoted by tr(f), which is a
subset of D∗×E :

tr(f) = {(a,α) ∈ D∗×E ; α ∈ f (ā)}.

Proposition 7.11.
The function tr is an isomorphism of ordered sets from C (D,E) onto the space
S (D∗×E) of initial segments of D∗×E with the product preorder :
(a,α) ≤ (b,β) ⇔ a ≥ b and α≤β.
For every X ∈ S (D∗×E), we have X = tr(f), where f ∈ C (D,E) is defined by :
f (u) = {β ∈ E ; (∃a ∈ D∗)(a ⊂ u and (a,β) ∈ X)}.

Let f ∈C (D,E) ; then tr(f) is an initial segment of D∗×E : indeed, if (b,β) ∈ tr(f)
and (a,α) ≤ (b,β), then β ∈ f (b̄), ā ⊃ b̄ and α ≤ β. Thus α ∈ f (b̄) (since f (b̄) is
an initial segment of E) and, since f is increasing, we have f (b̄) ⊂ f (ā), and
therefore α ∈ f (ā).
Let f , g ∈ C (D,E) ; if f ≤ g , then tr(f) ⊂ tr(g) : indeed, if (a,α) ∈ tr(f), then
α ∈ f (ā), and hence α ∈ g (ā), since f (ā) ⊂ g (ā).
Conversely, we prove that tr(f) ⊂ tr(g) ⇒ f ≤ g : first, let a be a finite subset of
D ; if α ∈ f (ā), then α ∈ g (ā), (since tr(f) ⊂ tr(g)) and hence f (ā) ⊂ g (ā).
Now let a be an initial segment of D ; since D is countable, we have, for instance
a = {α0, . . . ,αn , . . .}. Let an = {α0, . . . ,αn} ∈ D∗ ; ān is an increasing sequence, the
union of which is a. From what has just been proved, we deduce that f (ān) ⊂
g (ān). Since both f and g are σ-c.i., we therefore have :
f (a) =∪n f (ān) ⊂∪n g (ān) = g (a).
Thus, tr is an isomorphism of ordered sets from C (D,E) into S (D∗×E). It
remains to prove that its image is the whole set S (D∗×E).
Let X ∈S (D∗×E) ; we define f : D → E by taking f (u) = {β ∈ E ; ∃a ∈ D∗, a ⊂ u,
(a,β) ∈ X } for every u ∈ D. Indeed, f (u) is an initial segment of E : if β′ ≤ β ∈
f (u), then there exists a ∈ D∗ such that a ⊂ u and (a,β) ∈ X .
We have (a,β′) ≤ (a,β) in D∗×E , thus (a,β′) ∈ X , and hence β′ ∈ f (u).
Obviously, f is increasing ; it is also σ-continuous : indeed, let un be an in-
creasing sequence in D, and u = ∪nun . We have f (un) ⊂ f (u) for all n, thus
∪n f (un) ⊂ f (u). Conversely, if β ∈ f (u), then there exists a ∈ D∗ such that
a ⊂ u and (a,β) ∈ X . Since a is finite, we have a ⊂ un for some n, and there-
fore β ∈ f (un). Thus f (u) ⊂∪n f (un).
Finally, we prove that tr(f) = X : indeed, if (a,β) ∈ X , then, by definition of f ,
we have β ∈ f (ā) (since a ⊂ ā) ; thus (a,β) ∈ tr(f). Conversely, if (a,β) ∈ tr(f),
then β ∈ f (ā), and hence, by definition of f , there exists a′ ∈ D∗, a′ ⊂ ā, such
that (a′,β) ∈ X . Since a′ ⊂ ā, we have a′ ≤ a, thus (a,β) ≤ (a′,β), and hence
(a,β) ∈ X , since X is an initial segment.

Q.E.D.

Chapter 7. Models of lambda-calculus 119

We now consider a countable set D , and a function i : D∗×D → D .
If a = {α1, . . . ,αn} ∈ D∗ and α ∈ D , then i (a,α) will be denoted by a → α, or
{α1, . . . ,αn} →α.
We assume that a preorder is given on D ; we denote it by ≤ (as well as its ex-
tension to D∗, defined above). Let D =S (D).
We wish to define two σ-c.i. functions :

Φ : D →C (D,D) andΨ : C (D,D) →D.

This will be done as follows : there is a natural way of associating with the func-
tion i : D∗×D → D two functions on the power sets denoted by i and i−1 :

i : P (D∗×D) →P (D) and i−1 : P (D) →P (D∗×D).

Let s : P (D) → S (D) and s′ : P (D∗×D) → S (D∗×D) be the functions defined
by :

s(X) (resp. s′(X)) = X = the least initial segment containing X
(X is any subset of D (resp. D∗×D) and X is the set of lower bounds of elements
of X). Thus we may define :
ϕ= s′◦ i−1 : S (D) →S (D∗×D) and ψ= s ◦ i : S (D∗×D) →S (D).
Now, by proposition 7.11, tr is an isomorphism of ordered sets from C (D,D)
onto S (D∗×D). Let tr−1 : S (D∗×D) →C (D,D) be the inverse function. Then,
we may define :
Φ= tr−1◦ϕ : S (D) →C (D,D) andΨ=ψ◦ tr : C (D,D) →S (D).
Since i , i−1, s, s′ are σ-c.i. functions, Φ and Ψ are also σ-c.i. Thus, by proposi-
tion 7.10, (D,Φ,Ψ) defines a functional model of λ-calculus.

Lemma 7.12.
1. u ⊃Ψ◦Φ(u)(≡ λx(u)x) for every u ∈ D if and only if, for all α,β ∈ D and

a,b ∈ D∗ : b ≥ a and β≤α⇒ (b →β) ≤ (a →α).
2. u ⊂ Ψ◦Φ(u) for every u ∈ D if and only if, for every γ ∈ D, there exist

α,β ∈ D and a,b ∈ D∗ such that : b ≥ a, β≤α and (a →α) ≤ γ≤ (b →β).
In particular, if i is onto, then u ⊂Ψ◦Φ(u) for every u ∈D.

Let u ∈D ; thenΨ◦Φ(u) =ψ◦ϕ(u) = s ◦ i ◦ s′◦ i−1(u) ; now
s′◦ i−1(u) =

{(b,β) ∈ D∗×D ; (∃(a,α) ∈ D∗×D) (b,β) ≤ (a,α), i (a,α) ∈ u}.
HenceΨ◦Φ(u) =

{γ ∈ D ; (∃(a,α), (b,β) ∈ D∗×D) γ≤ i (b,β), (b,β) ≤ (a,α), i (a,α) ∈ u}.

1. Suppose that (b,β) ≤ (a,α) ⇒ i (b,β) ≤ i (a,α) (i is a homomorphism with
respect to ≤) ; then it is immediate thatΨ◦Φ(u) ⊂ u for every u ∈D.
Conversely, suppose that Ψ◦Φ(u) ⊂ u for every u ∈ D, and let α,β ∈ D and
a,b ∈ D∗ be such that (b,β) ≤ (a,α). Take u as the set of lower bounds of i (a,α),
and let γ = i (b,β). It follows immediately that γ ∈ Ψ◦Φ(u), thus γ ∈ u, and
therefore i (b,β) ≤ i (a,α).

120 Lambda-calculus, types and models

2. Suppose that, for every γ ∈ D , there exist α,β ∈ D , a,b ∈ D∗ such that :
(b,β) ≤ (a,α) and i (a,α) ≤ γ ≤ i (b,β). If γ ∈ u, then i (a,α) ∈ u since u is an
initial segment, thus γ ∈Ψ◦Φ(u).
Conversely, suppose u ⊂Ψ◦Φ(u) for every u ∈ D. Let γ ∈ D , and take u as the
set of lower bounds of γ. Then γ ∈Ψ◦Φ(u), and hence there exist α,β ∈ D and
a,b ∈ D∗ such that : γ≤ i (b,β) ; (b,β) ≤ (a,α) ; i (a,α) ∈ u. Therefore, i (a,α) ≤ γ.

Q.E.D.

We may give explicit definitions ofΨ andΦ : let f ∈C (D,D) ; then
Ψ(f) = s ◦ i (tr(f)), that is :

Ψ(f) = {β ∈ D ; (∃α ∈ D)(∃a ∈ D∗)β≤ i (a,α) and α ∈ f (ā)}.

Now let u, v ∈D ; then tr(Φ(u)) =ϕ(u) ; thus, by proposition 7.11 (where we take
X =ϕ(u)) :
Φ(u)(v) = {β ∈ D ; ∃b ∈ D∗, b ⊂ v , (b,β) ∈ϕ(u)}, that is to say
Φ(u)(v) = {β ∈ D ; ∃a,b ∈ D∗, ∃α ∈ D , b ⊂ v , (b,β) ≤ (a,α), i (a,α) ∈ u}.
Now condition (b,β) ≤ (a,α) may be written b̄ ⊃ ā and β ≤ α. Since v is an
initial segment and b ⊂ v , we have b̄ ⊂ v , and hence a ⊂ v . Finally :

Φ(u)(v) = {β ∈ D ; (∃α ∈ D)(∃a ∈ D∗) a ⊂ v, β≤α, i (a,α) ∈ u}.

The model defined by (D,Φ,Ψ) is a functionalβ-model if and only ifΦ◦Ψ is the
identity function on C (D,D), or, equivalently, ϕ◦ψ is the identity function on
S (D∗×D) (since tr is an isomorphism).
Now, if X ∈S (D∗×D), then ψ(X) = {β ; (∃(a,α) ∈ X)β≤ i (a,α)}. Thus :

ϕ◦ψ(X) = {(c,γ);
(∃(a,α), (b,β) ∈ D∗×D) (c,γ) ≤ (b,β), i (b,β) ≤ i (a,α) and (a,α) ∈ X }.

Clearly, X ⊂ϕ◦ψ(X) ;ϕ◦ψ is the identity function if and only if, for every initial
segment X of D∗×D :
(c,γ) ≤ (b,β), i (b,β) ≤ i (a,α), and (a,α) ∈ X ⇒ (c,γ) ∈ X .
By taking (c,γ) = (b,β), and X as the set of lower bounds of (a,α), we see that
this condition can be written :

i (b,β) ≤ i (a,α) ⇒ (b,β) ≤ (a,α)

or, equivalently :
(b →β) ≤ (a →α) ⇒ b ≥ a and β≤α.

Let us notice that, if D 6= ;, the β-model (D,Φ,Ψ) is non-trivial : indeed, it has
at least two elements, namely ; and D .

The model (D,Φ,Ψ) is extensional if and only if we have, also, Ψ◦Φ(u) = u for
every u ∈D. By applying lemma 7.12, we obtain the following conditions :

i (b,β) ≤ i (a,α) ⇔ (b,β) ≤ (a,α) for all α,β ∈ D and a,b ∈ D∗ ;

Chapter 7. Models of lambda-calculus 121

for every γ ∈ D , there exist α,β ∈ D and a,b ∈ D∗ such that

i (a,α) ≤ γ≤ i (b,β) and (b,β) ≤ (a,α).

Now, by the previous condition, we therefore have i (b,β) ≤ i (a,α), and hence
γ≤ i (a,α) ≤ γ. So we have proved :

Theorem 7.13. Let D be a countable preordered set, and i a function from D∗×D
into D. Define Φ : D →C (D,D) and Ψ : C (D,D) →D as follows :

Φ(u)(v) (also denoted by (u)v)
= {β ∈ D ; (∃α≥β)(∃a ∈ D∗) a ⊂ v and (a →α) ∈ u} ;

Ψ(f) (also denoted by λx f (x))
= {β ∈ D ; (∃α ∈ D)(∃a ∈ D∗)β≤ (a →α) and α ∈ f (ā)}.

Then (D,Φ,Ψ) defines a functional model of λ-calculus, which is a β-model
(necessarily non-trivial) if and only if :

(b →β) ≤ (a →α) ⇒ b ≥ a and β≤α for all α,β ∈ D and a,b ∈ D∗.

(D,Φ,Ψ) is an extensional β-model if and only if :

1. (b →β) ≤ (a →α) ⇔ b ≥ a and β≤α for all α,β ∈ D and a,b ∈ D∗.

2. For every γ ∈ D, there exist α ∈ D and a ∈ D∗ such that

γ≤ (a →α) ≤ γ.

In particular, if i is onto, and if condition 1 is satisfied, then (D,Φ,Ψ) is an ex-
tensional β-model.

Non-extensional models (P (ω) and Engeler’s model)

Here we take D as any countable set with the trivial preorder :
α≤β⇔α=β. The induced preorder on D∗ is : a ≤ b ⇔ a ⊂ b.
We have ā = a for every a ∈ D∗.

Any subset of D is an initial segment, thus D =P (D).

We take i as any one-one function from D∗×D to D . Clearly, the following
condition holds : (b → β) ≤ (a → α) ⇒ b ≥ a and β ≤ α. We therefore have a
β-model of λ-calculus.

Note that, in this case, the definitions ofΦ andΨ are :

(u)v = {α ∈ D ; ∃a ∈ D∗, a ⊂ v and (a →α) ∈ u} for all u, v ∈D ;

λx f (x) = {a →α ; α ∈ D , a ∈ D∗ and α ∈ f (a)} for every f ∈C (D,D).

By lemma 7.12(1), this model does not satisfy the condition u ⊃Ψ◦Φ(u), so it
cannot be extensional ; indeed, this condition can be written :
b ≥ a and α≤β⇒ (b →β) ≤ (a →α), or equivalently :
b ⊃ a and α=β⇒ b = a and α=β, which obviously does not hold.

122 Lambda-calculus, types and models

We obtain Plotkin and Scott’s model P (ω) by taking D =N ; i is the “ standard ”
one-to-one function from D∗×D onto D defined by :

i (e,n) = 1

2
(m +n)(m +n +1)+n, where m = ∑

k∈e
2k .

Engeler’s model DA is obtained as follows :
Let A be either a finite or a countable set, and D be the least set containing A
such that α ∈ D , a ∈ D∗ ⇒ (a,α) ∈ D (it is assumed that none of the members of
A are ordered pairs). The one-one function i : D∗×D → D is defined by taking
i (a,α) = (a,α).

Extensional models

Theorem 7.14. Let D be a countable set, i a one-to-one mapping of D∗×D
into D, and ≤0 a preorder on D such that :

(b →β) ≤0 (a →α) ⇒ a ≤0 b and β≤0 α.
Then, there exists a preorder on D, which we denote by ≤, as well as its extension
to D∗, with the following properties :
i) β≤0 α⇒ β≤α.
ii) (b →β) ≤ (a →α) ⇔ a ≤ b and β≤α.

Remark. In view of theorem 7.13, we therefore obtain a non-trivial extensional β-
model. We have the following definitions for functions Φ and Ψ in this β-model (u, v
range in D, while f ranges in C (D,D)) :

Φ(u)v ≡ (u)v = {α ∈ D ; ∃a ∈ D∗, a ⊂ v and (a →α) ∈ u} ;
Ψ(f) ≡λx f (x) = {a →α; α ∈ D, a ∈ D∗, α ∈ f (ā)}.

Indeed, if β≤ a →α andα ∈ f (ā), then β= a′ →α′, with a ≤ a′ (thus ā ⊂ ā′) andα′ ≤α.

Hence α′ ∈ f (ā) and finally α′ ∈ f (ā′).

Proof of the theorem : let R be a preorder on D ; the corresponding preorder on
D∗ will be denoted by R∗. Thus, by definition, for all a,b ∈ D∗ :

a R∗b ⇔ (∀α ∈ a)(∃β ∈ b)αRβ.

Consider the following condition, relative to the preorder R :
(C) a R∗b and βRα⇒ (b →β)R(a →α) for all a,b ∈ D∗ and α,β ∈ D .
The intersection S of any set R of preorders which satisfy condition (C) still
satisfies (C) : indeed, if a S∗b and βSα, then, clearly, a R∗b and βRα for every
R ∈R. Hence, (b →β)R(a →α), and therefore (b →β)S(a →α).
This allows us to define the least preorder R0 on D which contains ≤0 and sat-
isfies condition (C) (R0 is the intersection of all preorders which satisfy these
conditions ; there exists at least one such preorder, namely D×D). Now, since i
is one-to-one, we can define a binary relation S0 on D , by putting :

Chapter 7. Models of lambda-calculus 123

(b →β)S0 (a →α) ⇔ a R∗
0 b and βR0α. Obviously, S0 is a preorder, because i is

one-one, and both R0 and R∗
0 are preorders.

Now S0 ⊂ R0, since R0 satisfies condition (C).
It follows immediately that S∗

0 ⊂ R∗
0 . Let a,b ∈ D∗, α,β ∈ D be such that a S∗

0 b
and βS0α ; then we have a R∗

0 b and βR0α, and hence, by definition of S0 :
(b →β)S0 (a →α). Thus S0 satisfies condition (C).
Moreover, S0 contains ≤0 :
Indeed, if β ≤0 α, then α = (a′ → α′) and β = (b′ → β′) ; by the hypothesis on
the preorder ≤0, we have a′ ≤0 b′ and β′ ≤0 α

′, and thus (b′ →β′)S0 (a′ →α′) by
definition of S0.
By the minimality of R0, it follows that R0 ⊂ S0, and therefore R0 = S0.
Thus, by definition of S0 :

(b →β)R0 (a →α) ⇔ a R∗
0 b and βR0α.

So R0 satisfies conditions (i) and (ii) of the theorem, and can be taken as the
desired preorder ≤.

Proposition 7.15. For all α,β ∈ D, we have β≤α if and only if there exist k ≥ 0,
a1, . . . , ak , b1, . . . ,bk ∈ D∗ and α′,β′ ∈ D, such that ai ≤ bi (1 ≤ i ≤ k), β′ ≤0 α

′

and α= a1, . . . , ak →α′, β= b1, . . . ,bk →β′.

The notation a1, a2, . . . , ak →α′ stands for a1 → (a2 → . . . → (ak →α′) . . .).

Remark. In case k = 0, we understand that the condition means β≤0 α.

Proof of the proposition : we still use the notation R0 for the preorder ≤.
We define a binary relation R on D by :
βRα ⇔ there exist k ≥ 0, a1, . . . , ak ,b1, . . . ,bk ∈ D∗ and α′,β′ ∈ D , such that
ai R∗

0 bi (1 ≤ i ≤ k), β′ ≤0 α
′ and α= a1, . . . , ak →α′, β= b1, . . . ,bk →β′.

We first prove that R is a preorder.
Let α,β,γ ∈ D be such that βRα and γRβ. Thus we have :
α= a1, . . . , ak →α′, β= b1, . . . ,bk →β′, with ai R∗

0 bi , β′ ≤0 α
′ and

β= b′
1, . . . ,b′

l →β′′, γ= c1, . . . ,cl → γ′, with b′
j R∗

0 c j , γ′ ≤0 β
′′.

If l ≥ k, then (using both expressions for β, and the fact that i is one-one) :
b1 = b′

1, . . . , bk = b′
k and β′ = b′

k+1, . . . ,b′
l → β′′. Since β′ ≤0 α

′, we have, by the
hypothesis on ≤0 and the fact that i is onto :
α′ = a′

k+1, . . . , a′
l → α′′ with β′′ ≤0 α

′′, and a′
i ≤0 b′

i (k + 1 ≤ i ≤ l) ; therefore
γ′ ≤0 α

′′ and a′
i R∗

0 ci for k +1 ≤ i ≤ l .
Thus α= a1, . . . , ak , a′

k+1, . . . , a′
l →α′′ and γ= c1, . . . ,ck ,ck+1, . . . ,cl → γ′.

Now b′
i R∗

0 ci (1 ≤ i ≤ l) and ai R∗
0 bi , and thus ai R∗

0 ci for 1 ≤ i ≤ k (since b′
i = bi).

It follows that γRα.
The proof is similar in case k ≥ l .

We now prove that R ⊂ R0 ; if βRα, then we have :
α= a1, . . . , ak →α′, β= b1, . . . ,bk →β′, with ai R∗

0 bi (1 ≤ i ≤ k) and β′ ≤0 α
′.

124 Lambda-calculus, types and models

We prove βR0α by induction on k : this is obvious when k = 0. Assume the
result for k − 1 ; then β′′ R0α

′′, with α′′ = a2, . . . , ak → α′, β′′ = b2, . . . ,bk → β′.
Now α= a1 →α′′, β= b1 →β′′, and a1 R∗

0 b1, β′′ R0α
′′ ; thus βR0α.

Finally, we prove that R satisfies condition (C) :
Let a,b ∈ D∗, α,β ∈ D be such that a R∗ b and βRα. Since R ⊂ R0, it follows that
a R∗

0 b. Now βRα and therefore, by definition of R :
α = a1, . . . , ak → α′, β = b1, . . . ,bk → β′, with ai R∗

0 bi (1 ≤ i ≤ k) and β′ ≤0 α
′.

Thus :
a →α= a, a1, . . . , ak →α′, and b →β= b,b1, . . . ,bk →β′. Now a R∗

0 b, and hence
(b →β)R (a →α).
Since R ⊂ R0 and R satisfies (C), we see that R0 = R : this is the expected con-
clusion.

Q.E.D.

Models over a set of atoms (Scott’s model D∞)

Let A be a finite or countable non-empty set, the elements of which will be
called atoms. It is convenient to assume that no element of A is an ordered
pair. We define, inductively, a set D of formulas, and a one-to-one function
i : D∗×D → D (i (a,α) will also be denoted by a →α) :

• Every atom α is a formula ;
Let α be a formula and a be a finite set of formulas ; then :
• If α ∈ A (α is an atom) and a =;, then we take ;→α= i (;,α) =α.
• Otherwise, the ordered pair (a,α) is a formula, and we take :
a →α= i (a,α) = (a,α).

It follows that the atoms are the only formulas which are not ordered pairs.

Clearly, i is onto ; it is also one-one : if a →α= b → β, then, either the formula
a → α is an atom, and then a = b =; and α= β, or it is not an atom, and then
(a,α) = (b,β).

Every formula α can be written in the form α = a1, . . . , ak → α0, where k ≥ 0,
α0 ∈ A, ai ∈ D∗. This expression is unique if we impose ak 6= ;, or k = 0. Thus
the other possible expressions for α are :

α= a1, . . . , ak ,;, . . . ,;→α0.

The rank of a formula α, denoted by r k(α), is now defined by induction :
r k(α) = 0 whenever α is an atom ;
r k(a →α) = 1+ sup(r k(α), sup{r k(ξ); ξ ∈ a}) if a 6= ; or α is not an atom.

We consider a preorder on A, denoted by ≤. We extend it to the whole set D by
defining β≤α by induction on r k(α)+ r k(β), as follows :

If α,β ∈ A, then β≤α is already defined.

Chapter 7. Models of lambda-calculus 125

If r k(α)+ r k(β) ≥ 1, then we write α= a →α′, β= b →β′, and we put β≤α
⇔ β′ ≤α′ and b ≥ a (every element of a is smaller than some element of b).

Note that r k(α′)+r k(β′) < r k(α)+r k(β) ; also b ≥ a is already defined : indeed,
if α0 ∈ a and β0 ∈ b, then r k(α0)+ r k(β0) < r k(α)+ r k(β).

From this definition of the preorder ≤ on D , it follows that :

b →β≤ a →α⇔ b ≥ a and β≤α ;

this shows that we have defined an extensional β-model of λ-calculus (theo-
rem 7.13).

Remark. This model could be obtained by using theorem 7.14 :

define α≤0 β for α,β ∈ D , by α=β or (α,β ∈ A and α≤β). It is easy to check that ≤0 is

a preorder and that (b →β) ≤0 (a →α) ⇒ a ≤0 b and β≤0 α.

4. Applications

In this section, we use the models over a set A of atoms defined page 124, taking
the trivial preorder on A (α ≤ β⇔ α = β). In that case, the atoms are the max-
imal elements ; among the upper bounds of a given formula a1, . . . , ak → α0

(α0 ∈ A), there is one and only one atom which is α0.
Letα,β ∈ D ; thenα andβ are not ≤-comparable unless there is an atom greater
than α and β.
If α = a1, . . . , ak → α0 with α0 ∈ A,k ≥ 0, ak 6= ;, then α′ ≤ α if and only if
α′ = a′

1, . . . , a′
l →α0, with l ≥ k and a1 ≤ a′

1, . . . , ak ≤ a′
k .

i) Embeddings of applicative structures

Theorem 7.16. Every applicative structure may be embedded in a model of EC L
(extensional combinatory logic, see page 99).

Let A be an applicative structure (that is to say a set together with a binary func-
tion). We will assume that A is countable (the results below may be extended
to the case where A is uncountable by means of the compactness theorem of
predicate calculus). We consider the functional β-model constructed as above
(page 124), with A as the set of atoms. We define j : A → D and J : A → D by
taking, for every α ∈ A :
j (α) = {o} →α where o is some fixed element of A ;
J (α) = {δ ∈ D ; (∃k ≥ 0)(∃α1, . . . ,αk ∈ A) δ≤ { j (α1)}, . . . , { j (αk)} → j (αα1 . . .αk) }.

Note that, if α,α1, . . . ,αk ∈ A, then αα1 . . .αk ∈ A (A is an applicative structure).

For every α ∈ A, J (α) is clearly an initial segment of D .

126 Lambda-calculus, types and models

We have seen that D = S (D) is a model of EC L. Now we prove that J is the
desired embedding of A into D.

J is one-one : indeed, we have j (α) ∈ J (α) for every α ∈ A (take k = 0 in the
definition of J (α)). Therefore, if J (α) = J (α′), then j (α′) ∈ J (α) that is :
{o} →α′ ≤ { j (α1)}, . . . , { j (αk)}, {o} →αα1 . . .αk .
Now, since α′ and αα1 . . .αk are atoms, we have necessarily k = 0 and α′ =α.

(J (α))J (α′) ⊂ J (αα′) : let ξ ∈ (J (α))J (α′).
By theorem 7.13, there exists d ⊂ J (α′) such that d → ξ ∈ J (α), that is :
d → ξ≤ { j (α1)}, . . . , { j (αk)} → j (αα1 . . .αk).
If k = 0, then d → ξ≤ {o} →α ; then o ∈ d , which is impossible because o ∉ J (α′).
If k ≥ 1, then j (α1) ∈ d̄ , thus j (α1) ∈ J (α′), hence α1 =α′ (see above).
Thus ξ≤ { j (α2)}, . . . , { j (αk)} → j (αα′α2 . . .αk), and therefore ξ ∈ J (αα′).

J (αα′) ⊂ (J (α))J (α′) :
If ξ ∈ J (αα′), then ξ≤ { j (α1)}, . . . , { j (αk)} → j (αα′α1 . . .αk).
Let d = { j (α′)} ; then d ⊂ J (α′). Moreover :
d → ξ≤ { j (α′)}, { j (α1)}, . . . , { j (αk)} → j (αα′α1 . . .αk).
Therefore, d → ξ ∈ J (α) and it follows that ξ ∈ (J (α))J (α′).

Q.E.D.

ii) Extensional combinatory logic with couple

Let L be the language of combinatory logic (see chapter 6), with additional
constant symbols c, p1, p2. The term (c)x y is called the couple (or ordered pair)
x, y ; the term (p1)x(resp. (p2)x) is called the first (resp. the second) projection
of x.

We denote by EC LC (for extensional combinatory logic with couple) the fol-
lowing system of axioms, which an extension of EC L (extensional combinatory
logic, see page 99) :

EC L, (p1)(c)x y = x, (p2)(c)x y = y , ((c)(p1)x)(p2)x = x ;
(p1)x y = (p1)(x)y , (p2)x y = (p2)(x)y .

The first three axioms mean that x (resp. y) is the first (resp. the second) pro-
jection of the couple (c)x y , and that each x is identical to the couple formed by
p1x, p2x. The last two axioms mean that, for every x, the function defined by
p1x (resp. p2x) is p1◦x (resp. p2◦x).
As a consequence of these axioms, we have :

(c)x y z = ((c)(x)z)(y)z.

Indeed, according to the third axiom, it is sufficient to prove both :
(p1)(c)x y z = (p1)((c)(x)z)(y)z and (p2)(c)x y z = (p2)((c)(x)z)(y)z.

Now we have : (p1)(c)x y z = ((p1)(c)x y)z (4th axiom) = (x)z (1st axiom)

Chapter 7. Models of lambda-calculus 127

= (p1)((c)(x)z)(y)z (1st axiom). Same proof for p2.
We also deduce :

p1c = 1, p2c = 0, (c)p1p2 = I .

Indeed (p1c)x y = ((p1)(c)x)y (4th axiom) = (p1)((c)x)y (4th axiom)
= x (1st axiom), and hence p1c = 1 by extensionality.
Moreover, (cp1p2)x = ((c)(p1)x)(p2)x (see above) = x (3rd axiom),
thus cp1p2 = I by extensionality.

Theorem 7.17.
EC LC has a non-trivial model (that is a model of cardinality > 1).

Consider an infinite countable set of atoms A, with the trivial preorder. Let
A = A1 ∪ A2 be some partition of A in two infinite subsets. Let Di (i = 1,2)
be the set of lower bounds in D of the elements of Ai . Then D = D1 ∪D2 is a
partition of D in two initial segments.
Let ϕ1 : A → A1, ϕ2 : A → A2 be two one-to-one mappings ; they can be ex-
tended to isomorphisms of ordered sets from D onto D1,D2 :
whenever α = a1, . . . , ak → α0 (α0 ∈ A), take ϕ1(α) = a1, . . . , ak → ϕ1(α0) and
ϕ2(α) = a1, . . . , ak →ϕ2(α0).
Let D = S (D) ; the function ϕ−1

1 : P (D) → P (D) maps S (D) into S (D), since
ϕ1 is an isomorphism from D onto D1. Now this function is clearly σ-c.i., so
there exists p1 ∈D such that (p1)u =ϕ−1

1 (u) for every u ∈D. Similarly, there is a
p2 ∈D such that (p2)u =ϕ−1

2 (u).
Also, we may define c ∈D such that (c)uv =ϕ1(u)∪ϕ2(v) for all u, v ∈D :
indeed, since ϕ1 and ϕ2 are isomorphisms of ordered sets, ϕ1(u)∪ϕ2(v) is an
initial segment of D whenever u, v ∈D. Thus, this function maps D×D into D,
and it is σ-c.i. : this yields the existence of c.
We therefore have :

(p1)(c)uv =ϕ−1
1 (ϕ1(u)∪ϕ2(v)) = u and similarly (p2)(c)uv = v .

Also, ((c)(p1)u)(p2)u =ϕ1(ϕ−1
1 u)∪ϕ2(ϕ−1

2 u) = (u∩D1)∪(u∩D2) = u. Thus, the
first three axioms of EC LC are satisfied in the model under consideration.
Moreover, we haveα ∈ (p1u)v ⇔ (∃a ⊂ v)(a →α) ∈ p1u (theorem 7.13) ; now, by
definition of p1u, we have α ∈ (p1u)v ⇔ (∃a ⊂ v)ϕ1(a → α) ∈ u ; on the other
hand, ϕ1(a →α) = a →ϕ1(α) by definition of ϕ1, and hence :
α ∈ (p1u)v ⇔ (∃a ⊂ v)a →ϕ1(α) ∈ u ;
therefore, we obtainα ∈ (p1u)v ⇔ϕ1(α) ∈ (u)v , i.e. α ∈ (p1u)v ⇔α ∈ϕ−1

1 ((u)v),
and finally (p1)uv = (p1)(u)v . This proves the last two axioms.

Q.E.D.

We now give a set of equational formulas, denoted by EC LC=, which axiomatize
the universal consequences of EC LC :

128 Lambda-calculus, types and models

EC L= (a set of equations which axiomatize the universal consequences of EC L,
see chapter 6, page 104) ;
λxλy(p1)x y =λxλy x ; λxλy(p2)x y =λxλy y ; λx((c)(p1)x)(p2)x =λx x ;
λxλy(p1)x y =λxλy(p1)(x)y ; λxλy(p2)x y =λxλy(p2)(x)y .
Clearly, these formulas are universal consequences of EC LC . Conversely, let M

be a model of these formulas : since M satisfies EC L=, it can be embedded in a
model of EC L, which satisfies the last five axioms (these are equations involving
closed terms : since they hold in M , they also hold in any extension of M).
Thus M is embedded in a model of EC LC , and therefore it satisfies all universal
consequences of EC LC .

Theorem 7.18. EC LC is not equivalent to a system of universal axioms.

It follows that neither C L nor EC L are equivalent to systems of universal ax-
ioms, since EC LC is obtained by adding universal axioms either to C L or to
EC L.

Proof : it suffices to exhibit a submodel of the above model of EC LC , in which
the extensionality axiom fails.
With each formula α ∈ D , we associate a value |α| ∈ {0,1}, defined by induction
on the rank of α, as follows :

if α is an atom, then |α| = 0 ;
if r k(α) ≥ 1, say α= a → β, then we define |a| = inf{|γ|; γ ∈ a} (note that |γ|

is already defined since r k(γ) < r k(α) ; also, if a = ;, then |a| = 1). Then we
take |α| = |a| → |β|, where ε→ ε′ is defined in the usual way for ε,ε′ ∈ {0,1} (|β|
is already defined since r k(β) < r k(α)).

For every subset u of D (particularly for u ∈D), we define |u| = inf{|α|; α ∈ u}.

Lemma 7.19. If α,β ∈ D and α≤β, then |α| ≥ |β|.
The proof is by induction on r k(α)+ r k(β).
If α,β are atoms, then α≤β⇒α=β.
Otherwise, we have α= a →α′, β= b →β′.
Since α ≤ β, we have a ≥ b and α′ ≤ β′. Suppose |α| < |β|, that is |α| = 0 and
|β| = 1 ; thus |a| = 1 and |α′| = 0. Since a ≥ b, every element of b is smaller than
some element of a ; therefore |b| = 1 (if b =;, this is obvious ; if b 6= ;, it follows
from the induction hypothesis). Since |β| = |b|→ |β′| = 1, it follows that |β′| = 1 ;
since α′ ≤ β′, we have, by induction hypothesis, |α′| ≥ |β′|, and hence |α′| = 1,
which is a contradiction.

Q.E.D.

Lemma 7.20. Let u ∈D. Then |u| = 1 if and only if |(u)v | = 1 for every v ∈D such
that |v | = 1.

Chapter 7. Models of lambda-calculus 129

Let u, v ∈ D be such that |u| = |v | = 1 ; we prove that |(u)v | = 1 : if α ∈ uv , then
a ⊂ v and a →α ∈ u ; thus |a| = |a →α| = 1, and therefore |α| = 1, by definition
of |a →α|.
Conversely, suppose that |u| = 0 ; then there exists α ∈ u such that |α| = 0. Since
i is onto, we haveα= b →β for some b ∈ D∗ and β ∈ D . Thus |b| = 1 and |β| = 0.
Let v ∈ D be the set of lower bounds of the elements of b. By lemma 7.19, we
have |v | = 1 ; now β ∈ (u)v since b ⊂ v and b → β ∈ u. Since |β| = 0, we have
|(u)v | = 0.

Q.E.D.

Lemma 7.21. Let u ∈ D and k ∈N. Then |u| = 1 if and only if |(u)v1 . . . vk | = 1
for all v1, . . . , vk ∈D such that |v1| = . . . = |vk | = 1.

This follows immediately from lemma 7.20, by induction on k.
Q.E.D.

Lemma 7.22. |K | = |S| = |p1| = |p2| = |c| = 1.

The considered model satisfies EC L, and therefore the axiom (K)x y = x. Thus
(K)uv = u for all u, v ∈D. Hence, |u| = |v | = 1 ⇒ |(K)uv | = 1 ; therefore, |K | = 1,
by lemma 7.21.
Similarly, we have (S)uv w = ((u)w)(v)w for all u, v, w ∈D. If |u| = |v | = |w | = 1,
then |((u)w)(v)w | = 1 by lemma 7.20, and hence |(S)uv w | = 1.
Therefore, |S| = 1 (lemma 7.21).
Note that, for every formula α ∈ D , we have |α| = |ϕ1(α)| = |ϕ2(α)| : this is
immediate from the definition of ϕ1,ϕ2, by induction on r k(α). Now, by def-
inition of p1, we have α ∈ (p1)u ⇔ ϕ1(α) ∈ u, for every u ∈ D. Therefore, if
|u| = 1, then |α| = 1 for every α ∈ (p1)u, and hence |(p1)u| = 1. It follows that
|p1| = 1 (lemma 7.21). Similarly, |p2| = 1. Finally, for every formula α ∈ D , and
all u, v ∈ D, we have α ∈ (c)uv ⇔ α ∈ ϕ1(u) or α ∈ ϕ2(v). If |u| = |v | = 1, then
|ϕ1(u)| = |ϕ2(v)| = 1, and hence |α| = 1 for every α ∈ (c)uv ; thus |(c)uv | = 1,
and therefore |c| = 1 by lemma 7.21.

Q.E.D.

It follows that |t | = 1 for every closed term t .

Let D0 = {α ∈ D ; |α| = 1} ; by lemma 7.19, D0 is an initial segment of D .
Then we define D0 ⊂ D by taking D0 = {u ∈ D ; |u| = 1}. So D0 is the set of
initial segments of D0. By lemma 7.20, D0 is closed under Ap ; by lemma 7.22,
it contains K ,S, p1, p2,c. Thus it is a submodel of D. We will see that D0 is the
desired submodel of D.
We define a mappingϕ : D →D by takingϕ(u) = u∩D0 for every u ∈D. Clearly,
ϕ is σ-c.i. ; let f =λxϕ(x) ∈D, therefore (f)u = u ∩D0 for every u ∈D.

130 Lambda-calculus, types and models

If I = λx x, then (f)u = (I)u = u for every u ∈D0. By lemma 7.20, it follows that
| f | = |I | = 1, and hence f , I ∈D0.
Now D ∈ D (the whole set D is an initial segment), and (f)D = D0 6= D = (I)D
(indeed, D0 contains no atom). Thus f 6= I , and therefore D0 does not satisfy
the extensionality axiom.

Q.E.D.

In fact, D0 does not even satisfy the formula ∀a(∀x(ax = x) → a = I). Therefore,
we have proved the following strenghtening of theorem 7.18 :

Theorem 7.23. The set of universal consequences of EC LC (and also, a fortiori,
of EC L) does not imply the formula ∀a(∀x(ax = x) → a = I).

Recall that the set of universal consequences of EC LC (resp. EC L) is equivalent
to the equations EC LC= (resp. EC L=) given above, page 127 (resp. in chapter 6,
page 104).

5. Retractions

Let D =S (D) be a β-model of λ-calculus. Given f , g ∈D, we define :
f ◦g =λx(f)(g)x ∈D.

Clearly, ◦ is an associative binary operation on D. An element ε ∈ D will be
called a retraction if ε◦ε= ε. Then the image of ε, which will be called a retract,
and will be denoted by Im(ε), is the set : {u ∈D ; (ε)u = u}.

Remark. Since S (D) is a complete lattice and Im(ε) is the set of fixed points of ε (con-

sidered as a σ-c.i. function from D to D), we see that every retract is a subset of S (D)

which is a complete lattice ; this follows from a theorem due to Tarski, which claims

that the set of fixed points of a monotone function on a complete lattice is a complete

lattice [Tar55].

For every retraction ε, the retract Im(ε) is a σ-complete subspace of D : let un

(n ∈ N) be an increasing sequence in Im(ε), and u = ∪nun ; then u ∈ Im(ε)
(indeed, we have (ε)u = u since ε defines a σ-c.i. function on D).
Moreover, it is easy to prove that, if εn (n ∈ N) is an increasing sequence of re-
tractions, then also ε = ∪nεn is a retraction (indeed, (f , g) 7→ f ◦g is a σ-c.i.
function on D×D).

Proposition 7.24. If ε,ε′ are retractions, then also
ε× ε′ = λxλ f ((f)(ε)(x)1)(ε′)(x)0 and ε;ε′ = λyλx(ε′)(y)(ε)x = λy ε′◦ y ◦ε are
retractions.

Indeed, we have (ε×ε′)(ε×ε′)u =λ f [(f)(ε)(ε×ε′)u1](ε′)(ε×ε′)u0.
Now (ε×ε′)u1 = (ε)(u)1 and (ε×ε′)u0 = (ε′)(u)0 ; thus (ε×ε′)(ε×ε′)u = (ε×ε′)u

Chapter 7. Models of lambda-calculus 131

for every u ∈D. Therefore, (ε×ε′)◦(ε×ε′) =λx(ε×ε′)(ε×ε′)x =λx(ε×ε′)x. Now
λx(ε×ε′)x = ε×ε′ by definition of ε×ε′.
On the other hand, we have, for every v ∈D :
(ε;ε′)(ε;ε′)v =λx(ε′)((ε;ε′)v)(ε)x ; now, for every u ∈D :
((ε;ε′)v)(ε)u = (ε′)(v)(ε)(ε)u = (ε′)(v)(ε)u. Thus
(ε;ε′)(ε;ε′)v =λx(ε′)(ε′)(v)(ε)x =λx(ε′)(v)(ε)x = (ε;ε′)v
for every v ∈D. It follows that :
(ε;ε′)◦(ε;ε′) =λy(ε;ε′)(ε;ε′)y =λy(ε;ε′)y .
Now, by definition of ε;ε′, we have λy(ε;ε′)y = ε;ε′.

Q.E.D.

The retract Im(ε× ε′) is the set of all “ couples ” λ f (f)aa′ such that a ∈ Im(ε)
and a′ ∈ Im(ε′).

Proposition 7.25.
The retract Im(ε;ε′) is canonically isomorphic with the space C (Im(ε), Im(ε′))
of σ-c.i. functions from Im(ε) to Im(ε′).

We now define two σ-c.i. functions :
F : Im(ε;ε′) →C (Im(ε), Im(ε′)) and G : C (Im(ε), Im(ε′)) → Im(ε;ε′).
Whenever a ∈ Im(ε;ε′), F (a) is the σ-c.i. function defined on Im(ε) by :
F (a)(u) = au. We do have au ∈ Im(ε′) since a = (ε;ε′)a = ε′◦a ◦ε and hence
au = (ε′)(a)(ε)u. Clearly, F is σ-c.i.
Whenever ϕ ∈C (Im(ε), Im(ε′)), we define ψ ∈C (D,D) by taking ψ(x) =ϕ(εx).
Then we put aϕ =λxψ(x) and G(ϕ) = ε′◦aϕ◦ε.
Thus G(ϕ) = (ε;ε′)aϕ, and hence G(ϕ) ∈ Im(ε;ε′). Moreover, G is σ-c.i. since
it is obtain by composing σ-c.i. functions.
We now prove that F and G are isomorphisms, each of them being the inverse
of the other.

G(F (a)) = a for every a ∈ Im(ε;ε′) :
Let F (a) =ϕ ; then G(F (a)) = ε′◦aϕ◦ε. Now aϕ = λxϕ(εx) = λx(a)(ε)x ; on the
other hand, a = ε′◦a ◦ε since a ∈ Im(ε;ε′) ; thus (a)(ε)x = (ε′)(a)(ε)x. It follows
that aϕ =λx(ε′)(a)(ε)x = ε′◦a ◦ε= a. Therefore G(F (a)) = ε′◦a ◦ε= a.

F (G(ϕ)) =ϕ for every ϕ ∈C (Im(ε), Im(ε′)) :
Let u ∈ Im(ε). We have G(ϕ) = ε′◦aϕ◦ε, thus :
F (G(ϕ))(u) = (ε′◦aϕ◦ε)u = (ε′)(aϕ)(ε)u = (ε′)(aϕ)u since (ε)u = u. Now :
(aϕ)u = ϕ(εu) (by definition of aϕ) = ϕ(u), and (ε′)(aϕ)u = (ε′)ϕ(u) = ϕ(u)
since ϕ(u) ∈ Im(ε′). Thus F (G(ϕ))(u) =ϕ(u) for every u ∈ Im(ε), and therefore
F (G(ϕ)) =ϕ.

Q.E.D.

132 Lambda-calculus, types and models

Extensional β-model constructed from a retraction

Let εbe a retraction 6= ;, such that ε= ε;ε ; take D′ = Im(ε) and F ′ =C (D′,D′).
We shall define an extensional β-model by applying proposition 7.10. We first
notice that a,b ∈ D′ ⇒ (a)b ∈ D′. Indeed, (ε)ab = (ε;ε)ab = (ε)(a)(ε)b ; since
(ε)a = a and (ε)b = b, it follows that ab = (ε)(a)b, and hence ab ∈D′.
We define F : D′ → F ′ and G : F ′ → D′ as in the proof of proposition 7.25,
with ε = ε′ = ε;ε′. We have D′ = Im(ε;ε) and F ′ = C (Im(ε), Im(ε)). Thus
F (a)(b) = (a)b for all a,b ∈D′ and G(ϕ) = ε◦aϕ◦ε= (ε)aϕ, where aϕ =λxϕ(εx).
We have seen that F ◦G is the identity function on C (D′,D′) and that G ◦F is
the identity function on D′. Thus, by proposition 7.10, we have an extensional
β-model of λ-calculus.

In order to obtain a retraction ε with the required properties, it is enough to
have a retraction ε0 6= ;, such that ε0 ⊂ (ε0;ε0).
Indeed, if F = λz(z;z) = λzλyλx(z)(y)(z)x, then ε0 ⊂ (F)ε0 ; then we define a
sequence εn of retractions by taking εn+1 = εn;εn = (F)εn . This is an increasing
sequence (easy proof, by induction on n). Let ε = ∪nεn ; then ε is a retraction
6= ;, and ε;ε= (F)ε=∪n(F)εn =∪nεn+1 = ε.

Example. Obviously, I = λx x is a retraction ; we have I;I = λyλx(I)(y)(I)x,
that is I;I = λyλx(y)x. Consider a non-extensional model D =S (D) (so that
I 6= I;I), in which the mapping i : D∗×D → D is onto (for instance, the model
P (ω) defined above, page 121). Then, by lemma 7.12(2), we have u ⊂λx(u)x for
every u ∈D. Thus λy y ≤λyλx(y)x (since ϕ≤ψ⇒λyϕ(y) ≤λyψ(y) whenever
ϕ,ψ ∈ C (D,D)). Therefore, I ≤ I;I ; this provides a retraction ε ≥ I such that
ε= ε;ε. Thus Im(ε) is an extensional β-model of λ-calculus.

Models over a set of atoms

We consider an extensional model D =S (D) constructed over a set A of atoms
(see page 124). Let ε0 be the initial segment of D generated by the set {{α} →α ;
α ∈ A}. If β ∈ D and u ∈D, then :
β ∈ ε0u ⇔ (∃b ⊂ u) b →β ∈ ε0 ⇔ (∃b ⊂ u,α ∈ A)β≤α ∈ b

⇔ (∃α ∈ A∩u)β≤α.
It follows that ε0u = A∩u (recall that this denotes the initial segment of D gen-
erated by A∩u).
Let α ∈ A ; then α ∈ (ε0)(ε0)u ⇔ α ∈ (ε0)u ⇔ α ∈ u. It follows that (ε0)(ε0)u =
(ε0)u and hence ε0 is a retraction.
The retract Im(ε0) is the set of all initial segments of D generated by the subsets
of A ; this is a complete lattice which is isomorphic with the power set P (A).
Let ε1 = ε0;ε0 ; we wish to prove that ε0 ⊂ ε1. To do so, it suffices to show that
{α} →α ∈ ε1 for every α ∈ A. Let a = {α} ; then α ∈ (ε0)a (since {α} →α ∈ ε0) and

Chapter 7. Models of lambda-calculus 133

a = (a); (sinceα=;→α) ; thus a = (a)(ε0);. Finally, we haveα ∈ (ε0)(a)(ε0); ;
now since ε1 =λyλx(ε0)(y)(ε0)x, we conclude that {α},;→α ∈ ε1, that is to say
{α} →α ∈ ε1.

Now, consider the increasing sequence εn of retractions and the retraction :
ε=∪nεn defined above. We therefore have ε= ε;ε.
Clearly, (ε0)u ⊂ u for every u ∈D, thus ε0 ≤ I =λx x (case of extensional models
in proposition 7.10).
We prove, by induction on n, that εn ≤ I for every n ∈N : indeed, by induction
hypothesis, εn ≤ I ; thus εn+1 = εn;εn ≤ I;I = λyλx(y)x = I since D is an
extensional model. Therefore εn+1 ≤ I . It follows that ε≤λx x.

Lemma 7.26.
i) If α ∈ D and r k(α) ≤ n, then ({α} →α) ∈ εn ;
ii) ε=λx x.

i) The proof is by induction on n.
If r k(α) = 0, then α ∈ A, and hence {α} →α ∈ ε0.
Now let α ∈ D be such that r k(α) = n + 1 ; we may write α = b → β, and put
a = {α}. We have b = {β1, . . . ,βk } ; by induction hypothesis, {βi } → βi ∈ εn for
1 ≤ i ≤ k ; it follows that (εn)b̄ ⊃ b, and hence (εn)b̄ ⊃ b̄ ; since εn ≤ λx x, we
have (εn)b̄ = b̄. Now, clearly, β ∈ (ā)b̄, since b →β ∈ a. By induction hypothesis,
{β} →β ∈ εn , thus β ∈ (εn)(ā)b̄ = (εn)(ā)(εn)b̄. Therefore :
(a,b → β) ∈ λyλx(εn)(y)(εn)x = εn;εn = εn+1. Now a,b → β = {α} → α ; this
completes the inductive proof.
ii) Since λx x is the initial segment of D generated by the elements of the form
{α} →α, where α ∈ D , we have ε⊃λx x, and therefore ε=λx x.

Q.E.D.

Lemma 7.27. εn ◦εm = (εn+1)εm = εp , where p = inf(m,n).

If n ≥ m, then (εn)(εm)u ≥ (εm)(εm)u = (εm)u since εn ≥ εm . Now εn ≤ λx x,
so we have (εn)(εm)u = (εm)u. Thus, by extensionality, εn ◦εm = εm . The case
n ≤ m is similar.
Now εn+1 = εn;εn , and hence (εn+1)εmu = (εn)(εm)(εn)u ; we have just seen
that the latter is equal to (εm)u if n ≥ m and to (εn)u if n ≤ m. The result follows,
by extensionality.

Q.E.D.

Let Dn = Im(εn) ⊂ D. By lemma 7.27, we have m ≥ n ⇒ (εm)(εn)u = (εn)u.
Thus Dn is an increasing sequence of σ-complete ordered sets (since they are
retracts). D0 is isomorphic with P (A) and Dn+1 is isomorphic with C (Dn ,Dn).
For every u ∈ D, let un = (εn)u. (un) is an increasing sequence, un ∈ Dn , and
supn un = u (we have supn εn =λx x by lemma 7.26).

134 Lambda-calculus, types and models

Thus we have a structure in the model D which is similar to that of Scott’s
model D∞ (see [Bar84], [Hin86]).

Now let Dn = {α ∈ D ; r k(α) ≤ n} ; then we have D0 = A, (Dn) is an increasing
sequence and ∪nDn = D .
The next proposition describes the structure of spaces Dn .

Proposition 7.28. i) D0 = A ; Dn+1 (with the preorder induced by D) is isomor-
phic with D∗

n ×Dn ;
ii) εn is the initial segment of D generated by {{α} →α ; r k(α) ≤ n} ;
iii) Dn is the set of all initial segments generated by the subsets of Dn ; it is iso-
morphic with S (Dn).

Proof of (i) : if b → β, c → γ have rank ≤ n + 1, then b,c ∈ D∗
n and β,γ ∈ Dn ;

moreover, (b →β) ≤ (c → γ) ⇔ b ≥ c et β≤ γ⇔ (b,β) ≤ (c,γ) in D∗
n ×Dn .

We prove (ii) by induction on n. This is obvious when n = 0, by definition of ε0.
For all β ∈ D , u ∈ D, we have : β ∈ εnu ⇔ ∃b ⊂ u, b → β ∈ εn . By induction
hypothesis, it follows that :
β ∈ εnu ⇔ ∃b ⊂ u, ∃α ∈ Dn ,b → β ≤ {α} → α⇔ ∃α ∈ Dn , β ≤ α, α ∈ u (indeed,
b → β≤ {α} →α⇔ β≤α et α ∈ b̄). Therefore, εnu = Dn ∩u (which proves part
(iii) of the proposition).
Now let β be an arbitrary element of εn+1 ; we are looking for some α ∈ Dn+1

such that β≤ {α} →α. We may write β= b,c → γ.
Since εn+1 =λyλx(εn)(y)(εn)x, we have γ ∈ (εn)(b̄)(εn)c̄. Let d ′ = (εn)c̄ = Dn ∩ c̄.

Then γ ∈ (εn)(b̄)d ′, that is γ ∈ Dn ∩ b̄d ′.
Hence γ ≤ δ for some δ ∈ Dn ∩ b̄d ′. Therefore, there exists d ′′ ⊂ d ′ such that
d ′′ → δ ∈ b̄. Now d ′′ is finite and d ′′ ⊂ Dn ∩ c̄. Thus there exists some finite d
such that d ⊂ Dn ∩ c̄ and d ′′ ⊂ d̄ . Since γ≤ δ and d ⊂ c̄, we have c → γ≤ d → δ ;
now d → δ≤ d ′′ → δ, and hence d → δ ∈ b̄.
It follows that b,c → γ ≤ {d → δ},d → δ. Take α = d → δ ; then α ∈ Dn+1 (since
d ⊂ Dn and δ ∈ Dn), and b,c → γ≤ {α} →α.
This yields the result, since β= b,c → γ.

Q.E.D.

6. Qualitative domains and stable functions

Let E be a countable set. A subset D of P (E) is called a qualitative domain if :

i) for every increasing sequence un ∈D (n ∈N), we have ∪nun ∈D ;
ii) if u ∈D and v ⊂ u, then v ∈D.

Let D0 be the set of finite elements of D. Thus every element of D is the union
of an increasing sequence of elements of D0.

Chapter 7. Models of lambda-calculus 135

We define the web D of D to be the union of all elements of D : D is the least
subset of E such that D ⊂P (D). We also have D = {α ∈ E ; {α} ∈D}.
Let D,D′ be two qualitative domains, and D , D ′ their webs. Then D ×D′ is a
qualitative domain (up to isomorphism), with web D⊕D ′ (the disjoint union of
D and D ′, which can be represented by (D × {0})∪ (D ′× {1})).

Let D,D′ be two qualitative domains. A σ-c.i. function f : D → D′ is said to be
stable if and only if :
for every u, v, w ∈D such that u, v ⊂ w , we have f (u ∩ v) = f (u)∩ f (v).

We will denote by S (D,D′) the set of all stable functions from D to D′.
Note that a σ-c.i. function f is stable if and only if :

u ∪ v ∈D ⇒ f (u ∩ v) ⊃ f (u)∩ f (v).

Let D1, . . . ,Dk ,D be qualitative domains, and f : D1 × . . .×Dk →D a σ-c.i. func-
tion. Then f is stable (with respect to the above definition of the qualitative
domain D1 × . . .×Dk) if and only if :

u1 ∪ v1 ∈D1, . . . ,uk ∪ vk ∈Dk ⇒
f (u1 ∩ v1, . . . ,uk ∩ vk) = f (u1, . . . ,uk)∩ f (v1, . . . , vk).

Clearly, every projection function pi : D1 × . . .×Dk →Di , defined by :

pi (u1, . . .uk) = ui

is stable.

Proposition 7.29.
i) Let fi : D →Di (1 ≤ i ≤ k) be stable functions. Then the function :
f : D →D1× . . .×Dk , defined by f (u) = (f1(u), . . . , fk (u)) for every u ∈D, is stable.
ii) If f : D →D′ and g : D′ →D′′ are stable, then so is g ◦ f .

i) Immediate, by definition of the qualitative domain D1 × . . .×Dk .
ii) If u∪v ∈D, then f (u∩v) = f (u)∩ f (v) ; now f (u), f (v) ⊂ f (u∪v), and hence
g (f (u)∩ f (v)) = g (f (u))∩ g (f (v)). Therefore, g (f (u ∩ v)) = g (f (u))∩ g (f (v)).

Q.E.D.

It follows from this proposition that any composite function obtained from sta-
ble functions of several variables is also stable.

Proposition 7.30.
Let D,D′ be qualitative domains, D,D ′ their webs, and f : D →D′ a σ-c.i. func-
tion. Then the following conditions are equivalent :
i) f is stable.
ii) If u ∈ D, α ∈ D ′ and α ∈ f (u), then the set {v ⊂ u ; α ∈ f (v)} has a least ele-
ment v0.
iii) If u ∈ D, a ∈ D′, a is finite and a ⊂ f (u), then {v ⊂ u ; a ⊂ f (v)} has a least
element v0.
Moreover, if f is stable, then this least element v0 is a finite set.

136 Lambda-calculus, types and models

It is obvious that (iii) ⇒ (ii). We now prove that (i) ⇒ (iii) : let f : D →D′ be a sta-
ble function, u ∈D, and a a finite subset of f (u). Then there exists a finite sub-
set v of u such that a ⊂ f (v) : indeed, u is the union of an increasing sequence
(un) of finite sets, and a ⊂ f (u) = ∪n f (un), thus a ⊂ f (un) for some n. On
the other hand, if v, w ⊂ u and a ⊂ f (v), f (w), then a ⊂ f (v)∩ f (w) = f (v ∩w).
Therefore, the least element v0 is the intersection of all finite subsets v ⊂ u such
that a ⊂ f (v).
Proof of (ii) ⇒ (i) : let f : D → D′ be a σ-c.i. function satisfying condition (ii),
and α,u, v be such that u ∪ v ∈D and α ∈ f (u)∩ f (v).
Let v0 be the least element of {w ⊂ u∪v ;α ∈ f (w)}. Since u and v are members
of this set, we have v0 ⊂ u, v , thus v0 ⊂ u ∩ v .
Since α ∈ f (v0), we have α ∈ f (u ∩ v), and therefore f (u)∩ f (v) ⊂ f (u ∩ v).

Q.E.D.

Let D,D′ be qualitative domains, D,D ′ their webs, and f : D →D′ a stable func-
tion. The trace of f , denoted by tr(f), is a subset of D0 ×D ′, defined as follows :

tr(f) = {(a,α) ∈D0 ×D ′; α ∈ f (a) and α ∉ f (a′), for every a′ ⊂ a, a′ 6= a}.

If u ∈ D and α ∈ u, then α ∈ f (u) ⇔ there exists a ∈ D0, such that a ⊂ u and
(a,α) ∈ tr(f). Therefore, a stable function is completely determined by its trace.
We define a binary relation ≺ on S (D,D′) by putting, for any two stable func-
tions f , g : D → D′, f ≺ g ⇔ f (u) = f (v)∩ g (u) for all u, v ∈ D such that u ⊂ v .
This relation is seen to be an order on S (D,D′), known as the Berry order. Thus,
if f ≺ g , then f (u) ⊂ g (u) for every u ∈D.

Proposition 7.31. Let f , g be two stable functions from D to D′. Then :
f ≺ g ⇔ tr(f) ⊂ tr(g).

Suppose that f ≺ g and (a,α) ∈ tr(f). Then α ∈ f (a) ⊂ g (a), and hence α ∈ g (a).
Thus there exists a′ ⊂ a such that (a′,α) ∈ tr(g).
Now f (a′) = f (a)∩ g (a′), so α ∈ f (a′), and hence a′ = a, by definition of tr(f).
Thus (a,α) ∈ tr(g) and therefore tr(f) ⊂ tr(g).
Now suppose that tr(f) ⊂ tr(g), and let u, v ∈ D, u ⊂ v . If α ∈ f (u), then there
exists a ⊂ u such that (a,α) ∈ tr(f). Thus (a,α) ∈ tr(g) and α ∈ g (a) ⊂ g (u).
Therefore α ∈ f (v)∩ g (u).
Conversely, if α ∈ f (v)∩ g (u), then there exist a ⊂ u, b ⊂ v , such that :
(a,α) ∈ tr(g), (b,α) ∈ tr(f). Thus (a,α), (b,α) ∈ tr(g) and a ∪b ⊂ v ∈D.
It follows that a = b, hence (a,α) ∈ tr(f), α ∈ f (a), and therefore α ∈ f (u).

Q.E.D.

Proposition 7.32. Let us consider two qualitative domains D, D′, and their webs
D, D ′. Then the set of all traces of stable functions from D to D′ is a qualitative
domain with web D0 ×D ′.

Chapter 7. Models of lambda-calculus 137

Let fn (n ∈N) be a sequence of stable functions, such that tr(fn) ⊂ tr(fn+1), and
therefore fn ≺ fn+1. Define f : D →D′ by taking f (u) =∪n fn(u) for every u ∈D

(note that fn(u) is an increasing sequence in D). Then f is stable :
indeed, if u∪v ∈D, then f (u∩v) =∪n fn(u∩v) =∪n(fn(u)∩ fn(v)) = f (u)∩ f (v).
Moreover, fn ≺ f : if u ⊂ v , then fn(u) = fn(v)∩ fp (u) for every p ≥ n, thus
fn(u) = fn(v)∩∪p fp (u) = fn(v)∩ f (u). Therefore ∪ntr(fn) ⊂ tr(f).
Conversely, if (a,α) ∈ tr(f), then α ∈ f (a), and therefore there exists an integer
n such that α ∈ fn(a). Thus (a′,α) ∈ tr(fn) for some a′ ⊂ a. Since tr(fn) ⊂ tr(f),
we have (a′,α) ∈ tr(f), and hence a = a′.
Thus (a,α) ∈ tr(fn) and therefore tr(f) ⊂∪ntr(fn). Finally, tr(f) =∪ntr(fn).
Now let f ∈S (D,D′) and X ⊂ tr(f). We prove that X is the trace of some stable
function g , which we define by putting :
α ∈ g (u) ⇔ there exists a ⊂ u such that (a,α) ∈ X .
Using proposition 7.30(ii), we prove that g is stable : letα ∈ g (u) ; then (a,α) ∈ X
for some a ⊂ u. If v ⊂ u and α ∈ g (v), then (b,α) ∈ X for some b ⊂ v . Now
(a,α), (b,α) ∈ tr(f), and a,b ⊂ u, thus a = b. Hence a ⊂ v , and a is the least
element of the set {v ∈D ; α ∈ f (v)}.
We have X = tr(g) : indeed, if (a,α) ∈ tr(g), then α ∈ g (a), thus (b,α) ∈ X for
some b ⊂ a. So α ∈ g (b), and hence a = b, by definition of tr(g). Therefore
(a,α) ∈ X .
Conversely, if (a,α) ∈ X , then α ∈ g (a), thus (b,α) ∈ tr(g) for some b ⊂ a.
It follows that (b,α) ∈ X (see above).
Hence (a,α), (b,α) ∈ tr(f), and therefore a = b, and (a,α) ∈ tr(g).

Q.E.D.

In view of the previous proposition, the space S (D,D′) of all stable functions
from D to D′, equipped with the order ≺, may be identified with a qualitative
domain with web D0 ×D ′ (note that D0 ×D ′ is countable).

Proposition 7.33. Let us consider two qualitative domains D, D′, and their webs
D, D ′. Then the function Eval : S (D,D′)×D →D′, defined by Eval(f ,u) = f (u),
is stable.

Let u, v ∈D, such that u ∪ v ∈D, and f , g ,h ∈S (D,D′) such that :
tr(f)∪tr(g) = tr(h). We need to prove f (u)∩g (v) ⊂ k(u∩v), where k ∈S (D,D′)
is defined by tr(k) = tr(f)∩ tr(g).
Let α ∈ f (u), g (v). Then there exist a ⊂ u, b ⊂ v such that :
(a,α) ∈ tr(f), (b,α) ∈ tr(g). Thus (a,α), (b,α) ∈ tr(h), and a,b ⊂ u ∪ v .
It follows that a = b ⊂ u ∩ v and (a,α) ∈ tr(f)∩ tr(g) = tr(k). Thus α ∈ k(u ∩ v).

Q.E.D.

Proposition 7.34.
Let D,D′,D′′ be qualitative domains, and f : D ×D′ → D′′ a stable function.

138 Lambda-calculus, types and models

Then the function Cur f : D → S (D′,D′′), defined by Cur f (u)(u′) = f (u,u′) for
all u ∈D, u′ ∈D′, is also stable.

Remark. The operation f 7→ Cur f is sometimes called “ curryfication ”.

We first prove that, if u ⊂ v , then Cur f (u) ≺ Cur f (v) : let u′, v ′ ∈D′ be such that
u′ ⊂ v ′ ; since f is stable, we have :
f (u, v ′)∩ f (v,u′) = f (u ∩ v,u′∩ v ′) = f (u,u′). In other words :
Cur f (u)(v ′)∩Cur f (v)(u′) = Cur f (u)(u′), which is the desired property.
Thus Cur f is an increasing function ; it is also σ-continuous : let un (n ∈N) be
an increasing sequence in D, and u =∪nun .
We need to prove that Cur f (u)(u′) =∪nCur f (un)(u′) for every u′ ∈D′, i.e. :
f (u,u′) =∪n f (un ,u′), which is clear, since f is σ-continuous.
Finally, we show that Cur f is stable : let u, v ∈D be such that u∪v ∈D. We have
to prove tr(Cur f (u ∩ v)) ⊃ tr(Cur f (u))∩ tr(Cur f (v)).
Let (a,α) ∈ tr(Cur f (u))∩ tr(Cur f (v)) ; we have :
α ∈Cur f (u)(a) = f (u, a) and α ∈ f (v, a).
Since f is stable, α ∈ f (u ∩ v, a) = Cur f (u ∩ v)(a). Thus there exists b ⊂ a such
that (b,α) ∈ tr(Cur f (u ∩ v)) ⊂ tr(Cur f (u)). Since (a,α) ∈ tr(Cur f (u)), we have
b = a, and therefore (a,α) ∈ tr(Cur f (u ∩ v)).

Q.E.D.

The next proposition provides a new method for constructing β-models :

Proposition 7.35. Let D be a qualitative domain, D its web ; let :
Φ : S (D,D) →D,Ψ : D →S (D,D) two stable functions.

Then D is a functional model of λ-calculus. D is a β-model provided that Φ◦Ψ
is the identity function on D ; in that case, the β-model is extensional if and only
ifΨ◦Φ is the identity function on S (D,D).

In order to define the functional model, we take F =S (D,D), and we take F∞

as the set of those stable functions from DN to D which depend only on a finite
number of coordinates.
Remark. More precisely, let f : DN → D be a function which depends only on a finite

number of coordinates. Thus, we may consider f as a function from Dn to D for some

integer n ; we say that f ∈F∞ if, and only if this function is stable.

We put (u)v =Φ(u)(v) for all u, v ∈D, and λx f (x) =Ψ(f) for every f ∈F .
Let Ap : D×D →D be defined by Ap(u, v) = (u)v ; it is a stable function :
indeed, we have Ap(u, v) = Eval(Φ(u), v) (composition of stable functions Eval
andΦ).
We now check conditions 1, 2, 3 of the definition of functional models of λ-
calculus :
(1) Every coordinate function xi is in F∞ : already seen, page 135.

Chapter 7. Models of lambda-calculus 139

(2) If f , g ∈F∞, then (f)g ∈F∞ :
Indeed (f)g is stable, since (f)g = Ap(f , g) is given by composition of stable
functions Ap, f , g .
(3) If f (x1, . . . , xn) ∈F∞, then λxi f ∈F∞ :
For simpler notations, we suppose i = n and we put :
g (x1, . . . , xn−1) = λxn f (x1, . . . , xn−1). We need to prove that g is stable. Now, if
u1, . . . ,un−1 ∈ D, then g (u1, . . . ,un−1) =Ψ(Cur f (u1, . . . ,un−1)) (we consider f as
a stable function from Dn−1 ×D to D). Thus g is stable, since it is obtained by
composing the stable functionsΨ and Cur f .

Q.E.D.

Coherence spaces

A coherence space D is a finite or countable non-empty set, equipped with a
coherence relation denoted by ³ (a reflexive and symmetric binary relation) ;
α³β should be read : “α is coherent withβ ”. If D , D ′ are two coherence spaces,
then we can make of the product set D ×D ′ a coherence space, by putting :
(α,α′) ³ (β,β′) ⇔α³α′ and β³β′.
An antichain of D is a subset A of D such that α,β ∈ A, α³β⇒α=β.
The set of all antichains (resp. all finite antichains) of D is denoted by A (D)
(resp. A0(D)).
The space D =A (D) is a qualitative domain, with web D , called the qualitative
domain associated with the coherence space D. The set D0 = A0(D) of all finite
antichains of D is a coherence space, the coherence relation being :
a ³ b ⇔ a ∪b ∈A0(D), for all a,b ∈A0(D).
Let D,D ′ be two coherence spaces, and D,D′ the associated qualitative do-
mains. It follows from the above properties that D0 ×D ′ can be considered as a
coherence space.

A qualitative domain D, with web D , is associated with a coherence space if and
only if it satisfies the following property :
For every u ⊂ D, if every two-element subset of u is in D, then u is in D.
Indeed, if this property holds, then we may define a coherence relation on D
by putting : α³ α′ ⇔ α= α′ or {α,α′} ∉ D, for all α,α′ ∈ D ; then it can be seen
easily that D =A (D).

Proposition 7.36.
Let D,D ′ be two coherence spaces, D = A (D), D′ = A (D ′) the corresponding
qualitative domains. Then a subset X of the coherence space D0 ×D ′ is an an-
tichain if and only if it is the trace of some stable function from D to D′.

Let X be an antichain in D0 ×D ′. We define f : D →D′ by taking :
α ∈ f (u) ⇔ there exists a ⊂ u such that (a,α) ∈ X (for all u ∈D, α ∈ D ′).

140 Lambda-calculus, types and models

Then f (u) is an antichain of D ′ : ifα,β ∈ f (u) andα³β, then there exist a,b ⊂ u
such that (a,α), (b,β) ∈ X . Thus (a,α) ³ (b,β), and, since X is an antichain, we
have α=β (and a = b).
The function f is obviously σ-c.i. We now prove that f is stable : if u ∪ v ∈ D

andα ∈ f (u)∩ f (v), then there exist a ⊂ u, b ⊂ v such that (a,α), (b,α) ∈ X . Now
(a,α) ³ (b,α) since a ∪b ∈ D0. It follows that a = b, and hence a ⊂ u ∩ v , and
α ∈ f (u ∩ v) by definition of f . Thus f (u)∩ f (v) ⊂ f (u ∩ v).
Finally, X is the trace of f : if (a,α) ∈ tr(f), then α ∈ f (a), and hence (b,α) ∈ X
for some b ⊂ a. Therefore, α ∈ f (b), by definition of f , so b = a by definition of
tr(f). Thus (a,α) ∈ X .
Conversely, if (a,α) ∈ X , then α ∈ f (a), and hence (b,α) ∈ tr(f) for some b ⊂ a.
Then (b,α) ∈ X , as proved above. Since (a,α) ³ (b,α) and X is an antichain, it
follows that a = b, and therefore (a,α) ∈ tr(f).
Now let f : D → D′ be a stable function. It remains to prove that tr(f) is an
antichain in D0 ×D ′. If (a,α) ³ (b,β) and both are in tr(f), then a ∪b ∈ D, and
α ³ β. Now α ∈ f (a), β ∈ f (b), and hence α,β ∈ f (a ∪b). Since f (a ∪b) is an
antichain in D ′, we have α = β. Therefore, (a,α), (b,α) ∈ tr(f) and a ∪b ∈ D. It
then follows from the definition of tr(f) that a = b.

Q.E.D.

Therefore, for any two coherence spaces D,D ′, the space of all stable functions
from A (D) to A (D ′) may be identified with A (D0 ×D ′), where D0 =A0(D).

Proposition 7.37. Let D be a coherence space, D = A (D) the corresponding
qualitative domain, and D0 = A0(D). Let i be an isomorphism of coherence
spaces from D0 ×D onto D. Then, with the following definitions, D is an exten-
sional β-model :
(u)v = {α ∈ D ; (∃a ⊂ v)i (a,α) ∈ u} for all u, v ∈D ;
λx f (x) = {i (a,α); a ∈ A0(D), α ∈ f (a) and α ∉ f (a′) for every a′ ⊂ a, a′ 6= a} for
every f ∈S (D,D).

Define Φ : D → S (D,D) by taking, for every u ∈ D, tr(Φ(u)) = i−1(u) = {(a,α) ;
i (a,α) ∈ u} which is an antichain in D0 ×D ′, and therefore the trace of some
stable function from D to D. Thus Φ is an isomorphism of qualitative domains
from D onto S (D,D). Now, defineΨ : S (D,D) →D by takingΨ(f) = i (tr(f)) =
{i (a,α) ; (a,α) ∈ tr(f)} which is, indeed, an antichain in D (an isomorphism of
coherence spaces takes antichains to antichains). Then Φ and Ψ are inverse
isomorphisms, so they are stable ; thus, it follows from proposition 7.35 that
D is an extensional β-model of λ-calculus. For all u, v ∈ D, we have (u)v =
Φ(u)(v) = {α ∈ D ; (a,α) ∈ tr(Φ(u)) for some a ⊂ v} = {α ∈ D ; i (a,α) ∈ u for some
a ⊂ v}.

Q.E.D.

Chapter 7. Models of lambda-calculus 141

Models over a set of atoms

Let A be a finite or countable non-empty set ; the elements of A will be called
atoms. We are going to repeat (see page 124) the construction of the set of “for-
mulas” over A, already used in the definition of Scott’s model. Here it will be
denoted by ∆, D being used to denote the coherence space which will be de-
fined after. So we suppose that none of the atoms are ordered pairs, and we
give an inductive definition of ∆ and the one-to-one function i : ∆∗ ×∆→ ∆

(i (a,α) will be denoted by a →α) :

• every atom is a formula ;

• whenever a is a finite set of formulas and α is a formula, if a 6= ; or α ∉ A,
then (a,α) is a formula and we take a →α= i (a,α) = (a,α).

• if α ∈ A, then we take ;→α= i (;,α) =α.

As above (page 124), we define the rank of a formula α ∈∆, which is denoted by
r k(α). Let ∆n be the set of all formulas with rank ≤ n.

We now consider a coherence relation, denoted by ³, on A =∆0. Let D0 be the
coherence space therefore obtained. We define, by induction on n, a coherence
space Dn ⊂ ∆n : if α ∈ ∆n , then α ∈ Dn ⇔ there exist β ∈ Dn−1, b ∈ A0(Dn−1)
such that α = (b → β). Thus the restriction of i to A0(Dn−1)×Dn−1 is a one-
to-one mapping of A0(Dn−1)×Dn−1 into Dn . We define the coherence relation
on Dn in such a way as to make of this mapping an isomorphism of coherence
spaces.

Now we prove, by induction on n, that Dn is a coherence subspace of Dn+1. If
n = 0, then A ⊂ D1, since α ∈ A ⇒ α = (; → α). If α,β ∈ A, then α ³ β holds
in D0 if and only if (; → α) ³ (; → β) holds in D1. Thus D0 is a coherence
subspace of D1.

Assume that Dn−1 is a coherence subspace of Dn . Then A0(Dn−1)×Dn−1 is a
coherence subspace of A0(Dn)×Dn . Since i is an isomorphism from A0(Dn)×
Dn onto Dn+1, and also from A0(Dn−1)×Dn−1 onto Dn , it follows that Dn is a
coherence subspace of Dn+1.

Now we may define a coherence space D as the union of the Dn ’s ; i is therefore
an isomorphism of coherence spaces from A0(D)×D onto D .

We will call D the coherence space constructed over the set of atoms (A,³). If
the coherence relation on A is taken as the least one (α³β⇔α=β), then D is
called the coherence space constructed over A.

The qualitative domain D =A (D) associated with D is therefore an extensional
β-model of λ-calculus.

142 Lambda-calculus, types and models

Universal retractions

Let D be a β-model of λ-calculus. Recall that by a retraction in D, we mean
an element ε such that ε◦ε = ε. The image of ε is called the retract associated
with ε.
The coherence models constructed above have a universal retraction :
this means that the set of all retractions of the model is a retract.
This final section is devoted to the proof of :

Theorem 7.38. Let ρ be a constant symbol added to the language of combinatory
logic, and U R be the set of formulas :

ρ◦ρ = ρ ; ∀x[(ρx)◦(ρx) = ρx] ; ∀x[x ◦x = x → ρx = x].
Then the system of axioms EC L+U R has a non-trivial model.

We shall prove that this system of axioms is indeed satisfied in the model D =
A (D), where D is the coherence space constructed over a set of atoms. This
result is due to S. Berardi [Bera91]. The proof below is Amadio’s [Ama95]. See
also [Berl92].
The first lemma is about a simple combinatorial property of any function f :
X → X , with finite range. The notation f n will stand for f ◦ . . . ◦ f (f occurs n
times) ; f 0 = I d .

Lemma 7.39. Let f : X → X be a function with finite range. Then there is one
and only one retraction in { f n ; n ≥ 1}.

Uniqueness : if both f m and f n are retractions, then (f m)n = f m (since n ≥ 1),
and (f n)m = f n (since m ≥ 1). Thus f m = f n .

Existence : let Xn be the image of f n . Xn (n ≥ 1) is a decreasing sequence of
finite sets, thus there exists an integer k ≥ 1 such that Xk = Xn for all n ≥ k. Let
fk be the restriction of f to Xk . Then fk is a permutation of Xk , and hence (fk)N

is the identity function on Xk if N = (card(Xk))!. It follows that f N is the identity
on Xk , thus so is f N k . Now the image of f N k = (f k)N is Xk and therefore f N k is
a retraction from X into Xk .

Q.E.D.

Let D0 be the set of all finite elements of D (finite antichains of D). If f ∈ D0,
then { f u; u ∈D} is a finite set : indeed, if we put K f = {α ∈ D ; there exists a ∈D0

such that (a → α) ∈ f }, then K f is clearly a finite subset of D and, for every
u ∈D, f u is an antichain of K f .
By the previous lemma, we may associate with each f ∈ D0 a retraction ρ0(f) :
D → D, with finite range. Since ρ0(f) = f n , we have ρ0(f) ∈ D0, and therefore
ρ0 : D0 →D0.
ρ0 is an increasing function : let f , g ∈ D0, f ⊂ g ; then ρ0(f) = f m , ρ0(g) = g n .
Now f m = (f m)n ⊂ (g m)n = (g n)m = g n since both f m and g n are retractions.

Chapter 7. Models of lambda-calculus 143

Now we may define ρ : D → D by taking ρ(u) = ∪iρ0(ui), where ui is any in-
creasing sequence in D0 such that u = ∪i ui . In order to verify the soundness
of this definition, let u′

i be any other such sequence ; then we have ui ⊂ u′
j for

a suitable j (since ui is finite), thus ρ0(ui) ⊂ ∪ jρ0(u′
j), and hence ∪iρ0(ui) ⊂

∪ jρ0(u′
j). We also have the inverse inclusion, since ui and u′

j play symmetric
parts.
Obviously, ρ : D → D is an increasing function ; moreover, it is σ-continuous :
indeed, if ui (i ∈N) is an increasing sequence in D, and u =∪i ui , then we may
take an increasing sequence vi of finite sets such that vi ⊂ ui and u = ∪i vi .
Then we haveρ(u) =∪iρ0(vi), and henceρ(u) ⊂∪iρ0(ui). Sinceρ is increasing,
we obtain immediately the inverse inclusion.
Finally, ρ is a stable function from D to D : indeed, consider first f , g ∈D0 such
that f ∪ g ∈D0. We have ρ0(f) = f m , ρ0(g) = g n and ρ0(f ∩ g) = (f ∩ g)p . Since
f m , g n and (f ∩ g)p are retractions, and x → xmnp is a stable function (all func-
tions represented by a λ-term are stable), we obtain :
(f ∩ g)p = (f ∩ g)mnp = f mnp ∩ g mnp . Now f mnp = f m and g mnp = g n , thus
(f ∩ g)p = f m ∩ g n , that is to say ρ0(f ∩ g) = ρ0(f)∩ρ0(g).
Now, let u, v ∈ D be such that u ∪ v ∈ D. Let ui , vi ∈ D0 be two increasing se-
quences, such that u =∪i ui , v =∪i vi . Then we have ρ(u ∩ v) =∪iρ0(ui ∩ vi) =
∪i [ρ0(ui) ∩ ρ0(vi)] (according to the property which was previously proved)
=∪iρ0(ui)∩∪iρ0(vi) = ρ(u)∩ρ(v).
Therefore, ρ ∈D. Now we will see that ρ is a universal retraction.

Lemma 7.40. ρ◦ρ = ρ ; (ρu)◦(ρu) = ρu for every u ∈D.

It can be seen easily that ρ0◦ρ0 = ρ0 : if f ∈ D0, then ρ0(f) = f m for the least
m ≥ 1 such that f m is a retraction. Thus ρ0(f m) = f m .
Now let u ∈ D ; we have u = ∪i ui , where ui is an increasing sequence in D0.
Therefore : ρ(u) =∪iρ0(ui) =∪iρ0(ρ0(ui)) = ρ◦ρ(u), since ρ0(ui) is an increas-
ing sequence in D0 such that its union is ρ(u).
The proof of (ρu)◦(ρu) = ρu is immediate, since (ρ0ui)◦(ρ0ui) = ρ0ui , and
(x, y) → x ◦ y is a σ-c.i. function from D×D to D.

Q.E.D.

We will now prove that r ◦r = r ⇒ ρr = r , that is to say that the image of ρ
contains all the retractions of D. Let r be a retraction of D, and ri ∈ D0 an
increasing sequence such that r =∪i ri .

We have ρ(r) ⊂ r : indeed, ρ0(ri) = r ki
i ⊂ r ki = r . Thus ρ(r) =∪iρ0(ri) ⊂ r .

So it remains to prove that r ⊂ ρ(r).

Lemma 7.41. Let a,u,r ∈ D be such that r = r ◦r , a ⊂ r u and a is finite. Then
there exists a finite c ∈D such that a ⊂ r c, c ⊂ r c, c ⊂ r u.

144 Lambda-calculus, types and models

Since r = r ◦r , we have a ⊂ r r u. According to proposition 7.30(iii), there exists
a least finite c such that a ⊂ r c and c ⊂ r u. Now, if we put d = r c, we have
r d = r r c = r c, thus a ⊂ r d ; on the other hand, c ⊂ r u, thus r c ⊂ r r u, that is
d ⊂ r u. Since c is the least element satisfying these properties, we have c ⊂ d ,
thus c ⊂ r c.

Q.E.D.

Lemma 7.42. Let a,r ∈ D be such that r ◦r = r , a ⊂ r a and a is finite. Then
r a = ρ(r)a.

We have a ⊂ r a = ∪i ri a, thus, for some i0, a ⊂ ri a holds for every i ≥ i0. By
applying ri on both sides of this inclusion, we obtain :
a ⊂ ri a ⊂ r 2

i a ⊂ . . . ⊂ r n
i a ⊂ . . .

Now ρ0(ri) = r ki
i for some ki ≥ 1 ; thus ri a ⊂ ρ0(ri)a for every i ≥ i0. It suffices to

take the limits to obtain r a ⊂ ρ(r)a. The inverse inclusion is immediate, since
ρ(r) ⊂ r .

Q.E.D.

Now we are able to complete the proof of theorem 7.38.
Take u ∈D and a ∈D0 such that a ⊂ r u. By lemma 7.41, there exists c ∈D0 such
that a ⊂ r c, c ⊂ r c and c ⊂ r u. By lemma 7.42, we have r c = ρ(r)c and hence
a ⊂ ρ(r)c.
Since c is finite and contained in r u and r c, there exists i ≥ 1 such that c ⊂ ri u,
c ⊂ ri c. By applying ri on both sides, we obtain c ⊂ ri c ⊂ r 2

i c ⊂ . . . ⊂ r n
i c ⊂

. . . Now ρ0(ri) = r ki
i for some ki ≥ 1. Since c ⊂ ri u, we have r ki−1

i c ⊂ r ki
i u =

ρ(ri)u ⊂ ρ(r)u. Thus c ⊂ ρ(r)u. Since a ⊂ ρ(r)c and ρ(r) is a retraction, we
have a ⊂ ρ(r)◦ρ(r)u = ρ(r)u. Now a is an arbitrary finite subset of r u, and
hence we obtain r u ⊂ ρ(r)u. The inverse inclusion ρ(r)u ⊂ r u follows from
ρ(r) ⊂ r . Finally, ρ(r)u = r u, thus ρ(r) = r since u is an arbitrary element in D

and D is extensional.

References for chapter 7

[Ama95], [Bar84], [Bera91], [Berl92], [Berr78], [Cop84], [Gir86], [Gir89],
[Eng81], [Hin86], [Lon83], [Mey82], [Plo74], [Plo78], [Sco73], [Sco76], [Sco80],
[Sco82], [Sto77], [Tar55].
(The references are in the bibliography at the end of the book).

Chapter 8

System F

1. Definition of system F types

In this chapter, we deal with the second order propositional calculus, i.e. the set
of formulas built up with :

• a countable set of variables X , Y ,. . . , (called type variables or proposi-
tional variables)

• the connective → and the quantifier ∀.

Remark. We observe that the second order propositional calculus is exactly the same
as the set L of λ-terms defined in chapter 1 (page 7), with simply a change of nota-
tion : → instead of application, ∀ instead of λ. Indeed, we could define inductively an
isomorphism as follows (denoting by tA the λ-term associated with the formula A) :

if X is a type variable, then tX is X itself, considered as a λ-variable ;
if A,B are formulas, then tA→B is (tA)tB and t∀X A is λX tA .

For instance, the λ-term which corresponds to the formula :

∀X∀Y (X ,Y → X) →∀Z (Z → Z) would be (λXλY (X)(Y)X)λZ (Z)Z .

In fact, we are not interested in the λ-term associated with a formula. We simply ob-

serve that this isomorphism allows us to define, for second order propositional calcu-

lus, all the notions defined in chapter 1 for the set L of λ-terms : simple substitution,

α-equivalence, . . .

Thus, let F, A1, . . . , Ak be formulas and X1, . . . , Xk distinct variables. The for-
mula F<A1/X1, . . . , Ak /Xk>, obtained by simple substitution, is defined as in
chapter 1 (page 8), and has exactly the same properties.

We similarly define the α-equivalence of formulas, denoted by F ≡ G , by
induction on F :

• if X is a propositional variable, then X ≡G if and only if G = X ;
• if F = A → B , then F ≡ G if and only if G = A′ → B ′, where A ≡ A′ and

B ≡ B ′ ;

145

146 Lambda-calculus, types and models

• if F = ∀X A, then F ≡ G if and only if G = ∀Y B and A<Z /X>≡ B<Z /Y >
for all variables Z but a finite number.

We shall identify α-equivalent formulas. Like in chapter 1, this allows the defi-
nition of substitution :
We define the formula F [A1/X1, . . . , Ak /Xk] as F<A1/X1, . . . , Ak /Xk>, provided
that we choose a representative of F , no bound variable of which occurs free in
A1, . . . , Ak .
All the lemmas about substitution in chapter 1 still hold.

The types of system F are, by definition, the equivalence classes of formulas,
relative to the α-equivalence.

2. Typing rules for system F

We wish to build typings of the form Γ`F t : A, where Γ is a context, that is an
expression of the form x1:A1, . . . , xk :Ak , where x1, . . . , xk are distinct variables,
A1, . . . , Ak , A are types of system F , and t is a λ-term. The typing rules are the
following :

1. If x is a variable not declared in Γ, then Γ, x:A `F x:A ;
2. If Γ, x:A `F t :B , then Γ`F λx t : A → B ;
3. If Γ`F t : A and Γ`F u : A → B , then Γ`F (u)t : B ;
4. If Γ`F t : ∀X A, then Γ`F t : A[F /X] for every type F ;
5. If Γ`F t : A, then Γ`F t : ∀X A for every variable X such that no type in Γ
contains a free occurrence of X .

From now on, throughout this chapter, the notation Γ ` t :A will stand for
Γ`F t :A.
Obviously, if Γ` t :A, then all free variables of t are declared in the context Γ.

Proposition 8.1. If Γ` t :A and Γ⊂ Γ′, then Γ′ ` t :A.

Same proof as proposition 3.3.
Q.E.D.

Proposition 8.2.
Let Γ be a context, and x1, . . . , xk be variables which are not declared in Γ.
If Γ` ti :Ai (1 ≤ i ≤ k) and Γ, x1:A1, . . . , xk :Ak ` u:B, then :
Γ` u[t1/x1, . . . , tk /xk] : B.

In particular :

If x1, . . . , xk do not occur free in u, and if Γ, x1:A1, . . . , xk :Ak ` u:B, then Γ` u:B.

The proof is by induction on the number of rules used to obtain the typing Γ,
x1:A1, . . . , xk :Ak ` u:B . Consider the last one :

Chapter 8. System F 147

If it is rule 1, 2 or 3, the proof is the same as that of proposition 4.1.

If it is rule 4, then B ≡ A[F /X], and the previous step was :
Γ, x1:A1, . . . , xk :Ak ` u : ∀X A. By induction hypothesis, we get :
Γ` u[t1/x1, . . . , tk /xk] : ∀X A, and therefore, by rule 4 :
Γ` u[t1/x1, . . . , tk /xk] : A[F /X].

If it is rule 5, then B ≡∀X A, andΓ, x1:A1, . . . , xk :Ak ` u:A is a previous typing
such that X does not occur free in Γ, A1, . . . , Ak . By induction hypothesis, we get
Γ` u[t1/x1, . . . , tk /xk] : A, and therefore, by rule 5, Γ` u[t1/x1, . . . , tk /xk] : ∀X A.

Q.E.D.

Lemma 8.3. If Γ` t : ∀X1 . . .∀Xk A, then Γ` t : A[B1/X1, . . . ,Bk /Xk].

Indeed, suppose that X1, . . . , Xk have no occurrence in B1, . . . ,Bk (this is possible
by taking a suitable representative of ∀X1 . . .∀Xk A).
By rule 4, we get Γ` t : A[B1/X1] . . . [Bk /Xk].
Now A[B1/X1] . . . [Bk /Xk] ≡ A[B1/X1, . . . ,Bk /Xk] by lemma 1.13.

Q.E.D.

The part of the quantifier ∀ in system F is similar to that of the connective ∧ in
system D. The next proposition is the analogue of lemma 3.22 :

Proposition 8.4.
If Γ, x : F [A1/X1, . . . , Ak /Xk] ` t : B, then Γ, x : ∀X1 . . .∀Xk F ` t : B.

The proof is done by induction on the number of rules used to obtain :
Γ, x : F [A1/X1, . . . , Ak /Xk] ` t : B .
Consider the last one ; the only non-trivial case is that of rule 1, when t is the
variable x. Then B ≡F [A1/X1, . . . , Ak /Xk] and the result follows from lemma 8.3.

Q.E.D.

Notation.
Let Γ be the context x1:A1, . . . , xn :An . We define Γ[B1/X1, . . . ,Bk /Xk] as the con-
text x1 : A1[B1/X1, . . . ,Bk /Xk], . . . , xn : An[B1/X1, . . . ,Bk /Xk].

Proposition 8.5.
If Γ` t : A, then Γ[B1/X1, . . . ,Bk /Xk] ` t : A[B1/X1, . . . ,Bk /Xk].

By induction on the length of the proof ofΓ` t : A ; we also prove that the length
of the proof of Γ[B1/X1, . . . ,Bk /Xk] ` t : A[B1/X1, . . . ,Bk /Xk] is the same as that
of Γ` t : A. Consider the last rule used.

The result is obvious whenever it is rule 1, 2 or 3.

If it is rule 4, then A ≡ A′[C /Y] and we have a previous typing of the form
Γ` t : ∀Y A′. By induction hypothesis, we have :
Γ[B1/X1, . . . ,Bk /Xk] ` t : ∀Y A′[B1/X1, . . . ,Bk /Xk] (Y 6= X1, . . . , Xk and Y does

148 Lambda-calculus, types and models

not occur free in B1, . . . ,Bk). Moreover, the length of the proof of this typing
is the same as that of Γ` t : ∀Y A′.
Thus, by rule 4, we have :
Γ[B1/X1, . . . ,Bk /Xk] ` t : A′[B1/X1, . . . ,Bk /Xk][C ′/Y]
for any formula C ′. Since Y does not occur free in B1, . . . ,Bk , by lemma1.13, this
is equivalent to :
Γ[B1/X1, . . . ,Bk /Xk] ` t : A′[B1/X1, . . . ,Bk /Xk ,C ′/Y].
Now take C ′ ≡C [B1/X1, . . . ,Bk /Xk]. Again by lemma 1.13, we have :
A′[B1/X1, . . . ,Bk /Xk ,C ′/Y] ≡ A′[C /Y][B1/X1, . . . ,Bk /Xk] ≡ A[B1/X1, . . . ,Bk /Xk].
Hence Γ[B1/X1, . . . ,Bk /Xk] ` t : A[B1/X1, . . . ,Bk /Xk], and we obtain a proof of
the same length as that of Γ` t : A.

If it is rule 5, we have Γ ` t : A′ as a previous typing, and A ≡ ∀Y A′, where
Y does not occur free in Γ. Take a variable Z 6= X , which does not occur in
Γ, A′,B1, . . . ,Bk . By induction hypothesis, we have :
Γ[Z /Y] ` t : A′′, where A′′ ≡ A′[Z /Y]. In other words, Γ ` t : A′′ (since Y does
not occur in Γ). Moreover, the length of the proof is the same, so we may use
the induction hypothesis, and obtain :
Γ[B1/X1, . . . ,Bk /Xk] ` t : A′′[B1/X1, . . . ,Bk /Xk].
Since Z does not occur in Γ,B1, . . . ,Bk , it does not occur in [B1/X1, . . . ,Bk /Xk] ;
therefore, by rule 5 :

Γ[B1/X1, . . . ,Bk /Xk] ` t : ∀Z A′′[B1/X1, . . . ,Bk /Xk].
Now ∀Z A′′ ≡∀Y A′ (lemma 1.10) ≡ A ; hence :
∀Z A′′[B1/X1, . . . ,Bk /Xk] ≡ A[B1/X1, . . . ,Bk /Xk], and therefore :
Γ[B1/X1, . . . ,Bk /Xk] ` t : A[B1/X1, . . . ,Bk /Xk].

Q.E.D.

By an open formula, we mean a formula of which the first symbol is different
from ∀ ; so it is either a type variable or a formula of the form B →C .

For every formula A, we denote by A0 the unique open formula such that :
A ≡∀X1 . . .∀Xn A0 (n ∈N).

This formula A0 will be called the interior of A.

Let Γ be a context (resp. F be a formula), X1, . . . , Xk type variables with no free
occurrence in Γ (resp. F), and A a formula.
Any formula of the form A[B1/X1, . . . ,Bk /Xk] will be called a Γ-instance of A
(resp. F -instance of A). Therefore :
If A ≡ ∀X1 . . .∀Xk A0, then any formula of the form A0[B1/X1, . . . ,Bk /Xk] is an
A-instance of A0.

The next lemma is the analogue of lemma 4.2.

Lemma 8.6. Suppose that Γ` t : A, where A is an open formula.
i) if t is a variable x, then Γ contains a declaration x : B such that A is a B-
instance of B 0.

Chapter 8. System F 149

ii) if t =λx u, then A ≡ (B →C), and Γ, x : B ` u : C .
iii) if t = (u)v, then Γ` u : C → B, Γ` v : C , where B is such that A is a Γ-instance
of B 0.

In the proof of Γ` t : A, consider the first step at which one obtains Γ` t : B , for
some formula B such that A is a Γ-instance of B 0 (this happens at least once,
for example with B = A). Examine the typing rule (page 146) used at that step.

It is not rule 4 : indeed, if it were, we would have obtained at the previous
step Γ ` t : ∀XC , with B = C [U /X]. We may suppose that X does not occur in
Γ.
We have C = ∀X1 . . .∀Xn C 0, where C 0 is an open formula ; thus C 0 is either a
variable or a formula of the form F →G .

If C 0 = X , then every formula (therefore particularly A) is a Γ-instance of
C 0 ; this contradicts the definition of B .

If C 0 is a variable Y 6= X , then B = C [U /X] = C , so B 0 = C 0, and A is a Γ-
instance of C 0 ; again, this contradicts the definition of B .

If C 0 = F →G , then B =∀X1 . . .∀Xn C 0[U /X].
Now C 0[U /X] = F ′ → G ′ is an open formula. Thus B 0 = C 0[U /X]. Since A is a
Γ-instance of B 0, we have, by lemma 1.13 :
A = B 0[U1/Z1, . . . ,Uk /Zk] =C 0[U /X][U1/Z1, . . . ,Uk /Zk]

=C 0[U1/Z1, . . . ,Uk /Zk ,U ′/X]
where U ′ = U [U1/Z1, . . . ,Uk /Zk]. Now, by hypothesis, Z1, . . . , Zk are variables
which do not occur in Γ, and neither does X . Thus A is a Γ-instance of C 0,
contradicting the definition of B .

It is not rule 5 : suppose it were ; then B = ∀X C , and therefore B 0 = C 0.
Hence Γ` t : C at the previous step, and A is a Γ-instance of C 0 ; this contradicts
the definition of B .

Now we can prove the lemma :
In case (i), the rule applied at that step needs to be rule 1, since t is a variable x.
Therefore Γ contains the declaration x : B , and A is a Γ-instance of B 0. Since
the formula B =∀X1 . . .∀Xk B 0 appears in the context Γ, the free variables of B 0

which do not occur free in Γ are X1, . . . , Xk . Thus A is a B-instance of B 0.
In case (ii), the rule applied is rule 2. Thus :
B = (C → D), and Γ, x : C ` u : D .
Now B is an open formula, so A is a Γ-instance of B 0 = B .
Hence, we have A =C ′ → D ′, with :
C ′ =C [U1/X1, . . . ,Uk /Xk] and D ′ = D[U1/X1, . . . ,Uk /Xk].
By proposition 8.5, one deduces from Γ, x : C ` u : D that :
Γ[U1/X1, . . . ,Uk /Xk], x : C [U1/X1, . . . ,Uk /Xk] ` u : D[U1/X1, . . . ,Uk /Xk]. Since
X1, . . . , Xk do not occur in Γ, we finally obtain Γ, x : C ′ ` u : D ′ and A =C ′ → D ′.

150 Lambda-calculus, types and models

In case (iii), the rule applied at that step is rule 3 since the term t is (u)v .
Hence Γ` u : C → B and Γ` v : C , so A is a Γ-instance of B 0.

Q.E.D.

Theorem 8.7. If Γ` t : A and t β t ′, then Γ` t ′ : A.

Recall that t β t ′ means that t ′ is obtained from t by β-reduction.

It is sufficient to repeat the proof of proposition 4.3 (which is the correspond-
ing statement for system D), using lemma 8.6(ii) instead of lemma 4.2(ii) and
proposition 8.2 instead of proposition 4.1.

Q.E.D.

Theorem 8.7 fails if one replaces the assumption t β t ′ with t 'β t ′. Take for
instance t =λx x, t ′ =λx(λy x)(x)x ; then ` t : X → X , where X is a variable. Yet
` t ′ : X → X does not hold : indeed, by lemma 8.6, this would imply :
x : X ` (λy x)(x)x : X , and therefore x : X ` (x)x : A for some formula A, which
is clearly impossible (again by lemma 8.6).

We shall denote by ⊥ the formula ∀X X ; thus we have Γ, x : ⊥` x : A for every
formula A (rules 1 and 4, page 146).
We define the connective ¬ by taking ¬A ≡ A →⊥ for every formula A.

Proposition 8.8.
Every normal term t is typable in system F , in the context x1 : ⊥, . . . , xk : ⊥, where
x1, . . . , xk are the free variables of t .

Proof by induction on the length of t . Let Γ be the context x1 : ⊥, . . . , xk : ⊥,
where x1, . . . , xk are the free variables of t .
If t =λx u, then, by induction hypothesis, we have Γ, x : ⊥` u : A ; thus :
Γ`λx u : ⊥→ A.
If t does not start with λ, then t = (x1)t1 . . . tn .
By induction hypothesis, Γ` ti : Ai .
On the other hand, Γ` x1 : ⊥, so Γ` x1 : A1, . . . , An → X (rule 4).
Therefore, Γ` t : X .

Q.E.D.

Nevertheless, there are strongly normalizable closed terms which are not ty-
pable in system F (see [Gia88]).

3. The strong normalization theorem

In this section, we will prove the following theorem of J.-Y. Girard [Gir71] :

Theorem 8.9. Every term which is typable in system F is strongly normalizable.

Chapter 8. System F 151

We shall follow the proof of the corresponding theorem for system D (theo-
rem 3.20). As there, N denotes the set of strongly normalizable terms and N0

the set of terms of the form (x)t1 . . . tn , where x is a variable and t1, . . . , tn ∈N .
A subset X ofΛ is N -saturated if and only if :
(λx u)t t1 . . . tn ∈X whenever t ∈N and (u[t/x])t1 . . . tn ∈X .
We proved in chapter 3 (page 53) that (N0,N) is an adapted pair, that is :
i) N is N -saturated ;
ii) N0 ⊂N ; N0 ⊂ (N →N0) ; (N0 →N) ⊂N .

An N -interpretation I is a mapping X → |X |I of the set of type variables into
the set of N -saturated subsets of N which contain N0.

Let I be an N -interpretation, X a type variable, and X an N -saturated subset
of Λ such that N0 ⊂ X ⊂ N . We define an N -interpretation J = I [X ← X]
by taking |Y |J = |Y |I for every variable Y 6= X and |X |J =X .

For every type A, the value |A|I of A in an N -interpretation I is a set of terms
defined as follows, by induction on A :

• if A is a type variable, then |A|I is given with I ;
• |A → B |I = (|A|I →|B |I), in other words :

for every term t , t ∈ |A → B |I if and only if (t)u ∈ |B |I for every u ∈ |A|I ;
• |∀X A|I =⋂

{|A|I [X←X]; X is N -saturated, N0 ⊂X ⊂N },
in other words : for every term t , t ∈ |∀X A|I if and only if t ∈ |A|I [X←X] for
every N -saturated subset X ofΛ such that N0 ⊂X ⊂N .

Clearly, the value |A|I of a type A in an N -interpretation I depends only on
the values in I of the free variables of A. In particular, if A is a closed type, then
|A|I is independent of the interpretation I .

Lemma 8.10. For every type A and every N -interpretation I , the value |A|I is
an N -saturated subset of N which contains N0.

The proof is by induction on A :
If A is a type variable, this is obvious from the definition of N -interpre-

tations.
If A = B → C , then, by induction hypothesis, N0 ⊂ |B |I and |C |I ⊂ N .

Therefore, |B → C |I = |B |I → |C |I ⊂ N0 → N . Now N0 → N ⊂ N (defini-
tion of the adapted pairs) ; hence |B →C |I ⊂N .
Also by induction hypothesis, we have N0 ⊂ |C |I and |B |I ⊂ N . It follows
that |B → C |I = (|B |I → |C |I) ⊃ N → N0. Now N → N0 ⊃ N0, and therefore
|B →C |I ⊃N0.
On the other hand, |A|I = (|B |I →|C |I) is N -saturated since |C |I is (proposi-
tion 3.15).

If A = ∀X B , then |∀X B |I ⊂ |B |I ⊂ N (by induction hypothesis) ; now
N0 ⊂ |B |J for any N -interpretation J (induction hypothesis), and therefore

152 Lambda-calculus, types and models

N0 ⊂ |∀X B |I . Finally, |∀X B |I is N -saturated, as the intersection of a set of
N -saturated subsets ofΛ.

Q.E.D.

Lemma 8.11. Let A,U be two types, X a variable, I an N -interpretation and
X = |U |I . Then |A[U /X]|I = |A|J , where J =I [X ←X].

Proof by induction on A.
This is obvious whenever A is a type variable or A = B →C .
Suppose A =∀Y B (Y 6= X , and Y does not occur in U).
For each term t ∈Λ, we have :
i) t ∈ |∀Y B [U /X]|I if and only if t ∈ |B [U /X]|I [Y ←Y] for every N -saturated
subset Y ofΛ such that N0 ⊂Y ⊂N ;
ii) t ∈ |∀Y B |J if and only if t ∈ |B |J [Y ←Y] for every N -saturated subset Y ofΛ
such that N0 ⊂Y ⊂N .
Let I0 = I [Y ← Y] and J0 = J [Y ← Y] ; then J0 = I0[X ← X] since Y 6= X .
On the other hand, X = |U |I = |U |I0 since Y is not a free variable in U . Hence,
by induction hypothesis, |B [U /X]|I0 = |B |J0 . Thus, it follows from (i) and (ii)
that |∀Y B [U /X]|I = |∀Y B |J .
Q.E.D.

Lemma 8.12 (Adequacy lemma). Let I be an N -interpretation.
If x1 : A1, . . . , xk : Ak ` u : A and ti ∈ |Ai |I (1 ≤ i ≤ k), then :
u[t1/x1, . . . , tk /xk] ∈ |A|I .

The proof is by induction on the number of rules used to obtain the given typing
x1 : A1, . . . , xk : Ak ` u : A. Consider the last one. If it is rule 1, 2 or 3, then the
proof is the same as for the second adequacy lemma 3.16.

If it is rule 4, then A = B [U /X], and we have :
x1 : A1, . . . , xk : Ak ` u : ∀X B as a previous typing.
By induction hypothesis, u[t1/x1, . . . , tk /xk] ∈ |∀X B |I ;
thus u[t1/x1, . . . , tk /xk] ∈ |B |J , where J = I [X ← X], for every N -saturated
subset X ofΛ such that N0 ⊂X ⊂N .
By taking X = |U |I , we obtain |B |J = |B [U /X]|I , in view of lemma 8.11.
Therefore u[t1/x1, . . . , tk /xk] ∈ |B [U /X]|I .

If it is rule 5, then A =∀X B , and we have a previous typing :
x1 : A1, . . . , xk : Ak ` u : B ; moreover, X does not occur free in A1, . . . , Ak . Let X

be an N -saturated subset ofΛ such that N0 ⊂X ⊂N , and let J =I [X ←X].
Thus |Ai |I = |Ai |J , since X does not occur free in Ai . Hence ti ∈ |Ai |J .
By induction hypothesis, we have u[t1/x1, . . . , tk /xk] ∈ |B |J and therefore :
u[t1/x1, . . . , tk /xk] ∈ |∀X B |I .

Q.E.D.

Chapter 8. System F 153

Now the proof of the strong normalization theorem easily follows :
Suppose x1 : A1, . . . , xk : Ak ` t : A and consider the N -interpretation I defined
by taking |X |I = N for every variable X . By lemma 2, we have N0 ⊂ |Ai |I , so
xi ∈ |Ai |I . Thus, by the adequacy lemma 8.12, t [x1/x1, . . . , xk /xk] = t ∈ |A|I .
Now |A|I ⊂N (by lemma 2), and therefore t ∈N .

Q.E.D.

4. Data types in system F

Recall some definitions from chapter 3 :
A subset X of Λ is saturated if and only if (λx u)t t1 . . . tn ∈ X whenever

(u[t/x])t1 . . . tn ∈X .
An interpretation I is a mapping X → |X |I of the set of type variables into

the set of saturated subsets ofΛ.

Let I be an interpretation, X a type variable, and X a saturated subset of
Λ. We define an interpretation J =I [X ←X] by taking |Y |J = |Y |I for every
variable Y 6= X and |X |J =X .

For every type A, the value |A|I of A in an interpretation I is a set of terms
defined as follows, by induction on A :

• if A is a type variable, then |A|I is given with I ;
• |A → B |I = |A|I →|B |I , in other words :

for every term t , t ∈ |A → B |I if and only if tu ∈ |B |I for every u ∈ |A|I ;
• |∀X A|I =⋂

{|A|I [X←X]; X is any saturated subset ofΛ},
in other words : for every term t , t ∈ |∀X A|I if and only if t ∈ |A|I [X←X] for
every saturated subset X ofΛ.

Lemma 8.13 (Adequacy lemma). Let I be an interpretation ;
if x1 : A1, . . . , xk : Ak ` u : A and ti ∈ |Ai |I (1 ≤ i ≤ k), then :
u[t1/x1, . . . , tk /xk] ∈ |A|I .

Same proof as above.
Q.E.D.

The value of a closed type A (that is a type with no free variables) is the same in
all interpretations ; it will be denoted by |A|.
A closed type A will be called a data type if :
i) |A| 6= ; ;
ii) every term t ∈ |A| is β-equivalent to a closed term.

Condition (ii) can also be stated this way :
ii’) every term t ∈ |A| can be transformed in a closed term by β-reduction.

154 Lambda-calculus, types and models

Indeed, if (ii) holds, then t 'β u for some closed term u ; by the Church-Rosser
theorem, t and u reduce to the same term v by β-reduction. Now β-reduction
applied to a closed term produces only closed terms. Thus v is closed.

Proposition 8.14. The types :
Id =∀X (X → X) (identity type) ;
Bool =∀X {X , X → X } (Booleans type) ;
Int =∀X {(X → X) → (X → X)} (integers type)

are data types. More precisely :
t ∈ |Id|⇔ t 'β λx x ;
t ∈ |Bool|⇔ t 'β λxλy x or t 'β λxλy y ;
t ∈ |Int|⇔ t 'β λ f λx(f)n x for some integer n or t 'β λ f f .

Note that, in view of the adequacy lemma 8.13, we have the following con-
sequences :

If ` t : Id, then t 'β λx x.
If ` t : Bool, then t 'β λxλy x or t 'β λxλy y ;
If ` t : Int, then t 'β λ f λx(f)n x for some integer n or t 'β λ f f .

Proof of the proposition : we first show the implications ⇒.

1. Identity type :
Let t ∈ |Id| and x be a variable of the λ-calculus which does not occur in t ;
we define an interpretation I by taking |X |I = {τ ∈ Λ; τ 'β x} for every type
variable X . Since t ∈ |Id|, we have t ∈ |X → X |. Now x ∈ |X |, so (t)x ∈ |X |, and
therefore (t)x 'β x. Thus t is normalizable (t 'βη λx x). Let t ′ be its normal
form ; then t ′ =λx1 . . .λxm(y)t1 . . . tn .
If m = 0, then (t ′)x 'β (y ′)u1 . . .un x, where y ′ is a variable. This term cannot be
equal to x, so we have a contradiction.
If m ≥ 1, then we have t ′ =λx u. So (t ′)x 'β u ; therefore u 'β x, and t ′ 'β λx x.
Since t ′ is normal, t ′ =λx x.

2. Booleans type :
Let t ∈ |Bool| and x, y be variables of the λ-calculus which do not occur in t ;
we define an interpretation I by taking |X |I = {τ ∈Λ; τ'β x or τ'β y}. Since
t ∈ |Bool|, we have t ∈ |X , X → X |. Now x, y ∈ |X |, so (t)x y ∈ |X |, that is, for
instance, (t)x y 'β x. Thus t 'βη λxλy x, and t is normalizable. Let t ′ be its
normal form ; then t ′ =λx1 . . .λxm(z)t1 . . . tn .
If m = 0 or 1, then (t ′)x y 'β (z ′)u1 . . .un x y or (z ′)u1 . . .un y , where z ′ is a vari-
able. None of these terms can be equal to x, so we have a contradiction.
If m ≥ 2, then we have t ′ =λxλy u, thus (t ′)x y 'β u.
Therefore u 'β x and t ′ 'β λxλy x. Since t ′ is normal, t ′ =λxλy x.

Chapter 8. System F 155

3. Integers type :
Let t ∈ |Int| and f , x be variables of the λ-calculus which do not occur in t ; we
define an interpretation I by taking |X |I = {τ ∈ Λ; τ 'β (f)k x for some k ≥ 0}
for every type variable X . Thus x ∈ |X | and f ∈ |X → X |.
Since t ∈ |Int|, we have t ∈ |(X → X), X → X |. Thus (t) f x ∈ |X |, and hence
(t) f x 'β (f)k x. It follows that t 'βη λ f λx(f)k x, so t is normalizable. Let t ′

be its normal form ; then t ′ =λx1 . . .λxm(y)t1 . . . tn .
If m = 0, then (t ′) f x 'β (y ′)u1 . . .un f x, where y ′ is a variable. This term cannot
be equal to (f)k x, so we have a contradiction.
If m = 1, then we have t ′ = λ f (y)t1 . . . tn . So (t ′) f x 'β (y)t1 . . . tn x. Since this
term needs to be equal to (f)k x, we necessarily have y = f and n = 0 ; thus
t ′ =λ f f .
If m ≥ 2, then we have t ′ = λ f λx u ; so (t ′) f x 'β u. Therefore u 'β (f)k x and
t ′ 'β λ f λx(f)k x. Since t ′ is normal, we conclude that t ′ =λ f λx(f)k x.

Now we come to the implications ⇐ . We shall treat for instance the case of the
type Int. Suppose t 'β λ f f or t 'β λ f λx(f)k x for some k ≥ 0. In system DΩ,
we have `DΩ λ f f : (X → X) → (X → X) and
`DΩ λ f λx(f)k x : (X → X) → (X → X).
Thus, by theorem 4.7, we have `DΩ t : (X → X) → (X → X). In view of the
adequacy lemma for system DΩ (lemma 3.5), we have :
t ∈ |(X → X) → (X → X)|I for every interpretation I .
Hence t ∈ |∀X {(X → X) → (X → X)}| = |Int|.

Q.E.D.

We can similarly define the type ∀X {(X → X), (X → X), X → X } of binary lists
(finite sequences of 0’s and 1’s), the type ∀X {(X , X → X), X → X } of binary trees,
etc. All of them are data types.
In the next section, we give a syntactic condition which is sufficient in order
that a formula be a data type (corollary 8.19).

The type Int → Int (of the functions from the integers to the integers) is not a data
type.

Indeed, let ξ = λn nI 0y where y is a variable and I = λx x. Then ξ is a non-
closed normal term, so it is not β-equivalent to any closed term.
Now ξ ∈ |Int → Int| : suppose ν ∈ |Int|, then ν is β-equivalent to a Church nu-
meral, and therefore ξν'β λx x ∈ |Int|.
Indeed, even the type Id → Id is not a data type : apply the same method to
ξ′ =λ f f 0y .

The next proposition shows that it is possible to obtain new data types from
given ones :

Proposition 8.15. Let A,B be two data types. Then the types :

156 Lambda-calculus, types and models

A∧B : ∀X {(A,B → X) → X } (product of A and B) ;
A∨B : ∀X {(A → X), (B → X) → X } (disjoint sum of A and B) ;
L[A] : ∀X {(A, X → X), X → X } (type of the lists of objects of type A)

are data types. More precisely :
If t ∈ |A∧B |, then t 'β λ f (f)ab, where a ∈ |A| and b ∈ |B |.
If t ∈ |A ∨B |, then either t 'β λ f λg (f)a for some a ∈ |A| or t 'β λ f λg (g)b for
some b ∈ |B |.
If t ∈ |L[A]|, then either t 'β λ f λx(f a1)(f a2) . . . (f an)x, where n ≥ 0 and ai ∈ |A|
for 1 ≤ i ≤ n, or t 'β λ f (f)a for some a ∈ |A|.

Remark.
The term λ f λx(f a1)(f a2) . . . (f an)x represents the n-tuple (a1, . . . , an) in the λ-calcu-

lus ; if n = 0, this term is λ f λx x which represents the empty sequence ; if n = 1, the

one element sequence (a) is represented either by λ f λx(f a)x or by λ f (f)a which are

η-equivalent.

Product type :
Let t ∈ |A∧B | and f be a variable with no free occurrence in t . Define an inter-
pretation I by : |X |I = {τ ∈Λ ; τ 'β (f)ab for some a ∈ |A| and b ∈ |B |}. Then
f ∈ |A,B → X |I ; since t ∈ |(A,B → X) → X |I , we see that (t) f ∈ |X |I . Thus
there exist a ∈ |A|, b ∈ |B | such that (t) f 'β (f)ab. It follows that t is solvable ;
let t ′ be a head normal form of t .
If t ′ starts with λ, say t ′ = λ f u, then (t) f 'β (t ′) f 'β u, and therefore u 'β
(f)ab. Hence t 'β t ′ 'β λ f (f)ab, which is β-equivalent to a closed term since
so are a and b, by hypothesis.
Otherwise, t ′ = (x)t1 . . . tn , thus (t ′) f 'β (x)t1 . . . tn f 'β (t) f 'β (f)ab. Now
(x)t1 . . . tn f 'β (f)ab, so we have n = 1 and b 'β f . But this is impossible since
b is β-equivalent to a closed term.

Disjoint sum type :
Let t ∈ |A ∨B | and f , g be two distinct variables which do not occur free in t .
Define an interpretation I by :
|X |I = {τ ∈Λ ; τ'β (f)a for some a ∈ |A| or τ'β (g)b for some b ∈ |B |} ;
then f ∈ |A → X |I and g ∈ |B → X |I .
Since t ∈ |(A → X), (B → X) → X |I , we can see that (t) f g ∈ |X |I . So we have,
for instance, (t) f g 'β (f)a for some a ∈ |A|. It follows that t is solvable ; let t ′

be a head normal form of t .
If t ′ starts with at least two occurrences of λ, say t ′ = λ f λg u, then we have
(t) f g 'β (t ′) f g 'β u, and therefore u 'β (f)a. Thus t 'β t ′ 'β λ f λg (f)a,
which is β-equivalent to a closed term since so is a, by hypothesis.
If t ′ starts with only one occurrence of λ, then t ′ = λ f (x)t1 . . . tn (x need not be
distinct from f) ; thus (t ′) f g 'β (x)u1 . . .un g 'β (t) f g 'β (f)a.

Chapter 8. System F 157

Now (x)u1 . . .un g 'β (f)a, so we have n = 0 and a 'β g . But this is impossible
since a is β-equivalent to a closed term.
If t ′ does not start with λ, then t ′ = (x)t1 . . . tn ; so we have :
(t ′) f g 'β (x)t1 . . . tn f g 'β (t) f g 'β (f)a.
It follows that (x)t1 . . . tn f g 'β (f)a, but this is impossible : the head variable
has at least two arguments in the first term, but only one in the second.

List type :
Let t ∈ |L[A]| and f , x be two variables which do not occur free in t . Define an
interpretation I by :
|X |I = {τ ∈Λ; τ'β (f a1)(f a2) . . . (f an)x, with n ≥ 0 and ai ∈ |A|}.
Then f ∈ |A, X → X |I and x ∈ |X |I ; since t ∈ |(A, X → X), X → X |I , we get
(t) f x ∈ |X |I . So we have (t) f x 'β (f a1)(f a2) . . . (f an)x. It follows that t is solv-
able ; let t ′ be a head normal form of t .
If t ′ starts with at least two occurrences of λ, say t ′ = λ f λx u, then we have
(t) f x 'β (t ′) f x 'β u, and therefore u 'β (f a1)(f a2) . . . (f an)x.
Thus t 'β t ′ 'β λ f λx(f a1)(f a2) . . . (f an)x, which is a closed term since so are
the ai ’s, by hypothesis.
If t ′ starts with only one occurrence of λ, then t ′ =λ f (y)t1 . . . tn (y may be equal
to f) ; thus :

(t ′) f x 'β (y)u1 . . .un x 'β (t) f x 'β (f a1)(f a2) . . . (f an)x.
So we have (y)u1 . . .un x 'β (f a1)(f a2) . . . (f an)x, and therefore y = f , n = 1
and u1 'β a1 (in both terms, the head variable is the same and its arguments
are β-equivalent). It follows that t 'β t ′ 'β λ f (f)a1.
If t ′ does not start with λ, then t ′ = (y)t1 . . . tn , so we have :
(t ′) f x 'β (y)t1 . . . tn f x 'β (t) f x 'β (f a1)(f a2) . . . (f an)x. Therefore :
(y)t1 . . . tn f x 'β (f a1)(f a2) . . . (f an)x ; as before, it follows that n = 0, y = f ,
and an = f ; but this is impossible since, by hypothesis, an is β-equivalent to a
closed term.

Q.E.D.

Proposition 8.15 gives some particular cases of a general construction on data
types, which will be developed in the next section (theorem 8.28). Let us, for
the moment, consider one more instance.

Proposition 8.16.
For every data type A, the type BT [A] =∀X {(A, X , X → X), X → X } is also a data
type, called the type of binary trees indexed by objects of type A.

Let A = {t ∈ Λ; there exists a ∈ |A| such that t 'β a}. Thus A 6= ; and every
element of A is β-equivalent to a closed term.
We choose two distinct variables f , x, and we define E f x as the least subset of
Λwith the following properties :

158 Lambda-calculus, types and models

(?) x ∈ E f x ; if a ∈A and t ,u ∈ E f x , then (f a)tu ∈ E f x .

In other words, E f x is the intersection of all subsets ofΛwhich have these prop-
erties. It follows that :

If τ ∈ E f x , then
τ is β-equivalent to a term which has the only free variables f , x ;
if τ 6= x, then f , x are free in τ ;
either τ= x, or τ= (f a)tu with a ∈A and t ,u ∈ E f x ;
if τβτ′ then τ′ ∈ E f x .

Indeed, the set of λ-terms which have these properties has the properties (?).

Proposition 8.17 below shows, in particular, that every term in |BT [A]| is β-
equivalent to a closed term. This proves proposition 8.16.

Q.E.D.

Proposition 8.17. If t ∈ |BT [A]| and f , x are not free in t , then there is a τ ∈ E f x

such that t βλ f λx τ.

Remark. The terms of the form λ f λx τ, with τ ∈ E f x , are exactly the λ-terms which

represent binary trees indexed by elements of A .

We define an interpretation I by setting, for every type variable X :
|X |I = {ξ ∈Λ; there exists τ ∈ E f x such that ξβτ}.
Then, by definition of E f x , we have : x ∈ |X |I and f ∈ |A, X , X → X |I .
Since t ∈ |(A, X , X → X), X → X |I , we get (t) f x ∈ |X |I . In other words :

(t) f x β τ for some τ ∈ E f x .
Since every element of E f x is a head normal form, it follows that t is solvable ;
thus, t β t ′ where t ′ is a head normal form of t .
If t ′ starts with at least two occurrences of λ, say t ′ = λ f λx u, then we have
(t) f x β (t ′) f x β u β τ ∈ E f x . Therefore, t β t ′ βλ f λx τ.

If t ′ starts with only one occurrence of λ, then t ′ = λ f (y)t1 . . . tn for some vari-
able y ; thus (t) f x β (t ′) f x β (y)t1 . . . tn x β τ ∈ E f x .
Since τ'β (y)t1 . . . tn x, we cannot have τ= x. Therefore, τ= (f a)uv with a ∈A

and u, v ∈ E f x . Now, we have (y)t1 . . . tn x β (f)auv and therefore y = f ,n =
2, t1βa, t2βu and v = x. Thus, t β t ′ β λ f (f)au with u ∈ E f x . But x is free in
u ∈ E f x , and therefore is also free in t , which is a contradiction.

If t ′ does not start with λ, then t ′ = (y)t1 . . . tn , so we have :
(t) f x β (t ′) f x β (y)t1 . . . tn f x β τ ∈ E f x . Thus τ 6= x, so that τ = (f a)uv with
a ∈ A and u, v ∈ E f x . Therefore y = f and it follows that f is free in t ′ ; thus, f
is also free in t (because t β t ′), which is a contradiction.

Q.E.D.

Chapter 8. System F 159

5. Positive second order quantifiers

We define formulas with positive (resp. negative) second order quantifiers, also
called ∀+-formulas (resp. ∀−-formulas), by the following rules :

Every type variable is a ∀+ and ∀−-formula.
If A is a ∀+-formula, then ∀X A is also a ∀+-formula.
If A is ∀− (resp. ∀+) and B is ∀+ (resp. ∀−), then A → B is ∀+ (resp. ∀−).

Remark. Every quantifier free formula is ∀+ and ∀−.

There is no closed ∀−-formula.

We shall now prove the following :

Theorem 8.18. If A is a closed ∀+-formula and t ∈ |A|, then t is β-equivalent to
a normal closed λ-term.

Corollary 8.19. Every closed ∀+-formula which is provable in system F is a data
type.

Let A be such a formula. By theorem 8.18, every term in |A| is 'β to a closed
term ; so we only need to prove that |A| 6= ;. But, since A is provable in sys-
tem F , there is a λ-term t such that ` t : A. By the adequacy lemma 8.13, we
deduce that t ∈ |A|.

Q.E.D.

In order to prove theorem 8.18, we need to generalize the notion of “value of a
formula”, defined page 153.
A truth value set is, by definition, a non empty set V of saturated subsets of Λ,
which is closed by → and arbitrary intersection. In other words :

• V 6= ; ; X ∈V⇒ X is a saturated subset ofΛ ;
• the intersection of any non empty subset of V is inV ;
• X ,Y ∈V⇒ (X →Y) ∈V.

For example, the set V0 of all saturated subsets of Λ is a truth value set ; other
trivial examples are the two-elements set {;,Λ} and the singleton {Λ}.

A V-interpretation I is, by definition, a mapping X 7→ |X |V
I

of the set of type
variables into V.
Let I be a V-interpretation, X a type variable and X ∈ V. We define a V-
interpretation J = I [X ← X] by taking |Y |V

J
= |Y |V

I
for every type variable

Y 6= X , and |X |V
J

=X .

For every type A, the value |A|V
I

of A in aV-interpretation I is an element ofV
defined as follows, by induction on A :

• if A is a type variable, then |A|V
I

is given with I ;

160 Lambda-calculus, types and models

• |A → B |V
I
= |A|V

I
→|B |V

I
, in other words :

for every term t , t ∈ |A → B |V
I

if and only if tu ∈ |B |V
I

for every u ∈ |A|V
I

;
• |∀X A|V

I
=⋂

{|A|V
I [X←X]; X ∈V}, in other words :

for every term t , t ∈ |∀X A|V
I

if and only if t ∈ |A|V
I [X←X] for every X ∈V.

Remarks.
i) The value |A|I of a formula, defined page 153, is the particular case when the truth

value set is the set V0 of all saturated subsets ofΛ.

ii) The value |A|V
I

does not really depends on the interpetation I , but only on the re-

striction of I to the set of free variables of A. In particular, if A is a closed formula, this

value does not depends on I at all and will be denoted |A|V.

Lemma 8.20. Let V ⊂W be two truth value sets and I a V-interpretation. If A
is a ∀+(resp. a ∀−)-formula then |A|W

I
⊂ |A|V

I
(resp. |A|V

I
⊂ |A|W

I
).

Proof by induction on the length of the formula A. The result is trivial if A is a
variable, because we have |A|V

I
= |A|W

I
.

If A ≡ B →C and A is ∀+, then B is ∀− and C is ∀+. By induction hypothesis, we
get |B |V

I
⊂ |B |W

I
and |C |W

I
⊂ |C |V

I
.

It follows that |B →C |W
I
⊂ |B →C |V

I
which is the result.

If A ≡ B →C and A is ∀−, the proof is the same.
If A ≡∀X B and B is ∀+, then |A|V

I
=⋂

{|B |V
I [X←X]; X ∈V} and

|A|W
I
=⋂

{|B |W
I [X←X]; X ∈W}. By induction hypothesis, we have :

|B |W
I [X←X] ⊂ |B |V

I [X←X] ; now, since V⊂W, it follows that |A|W
I
⊂ |A|V

I
.

Q.E.D.

Corollary 8.21. If A is a closed ∀+-formula, then |A| ⊂ |A|V for every truth value
set V.

Immediate from lemma 8.20, since |A| = |A|V0 and V⊂V0 for every truth value
set V.

Q.E.D.

Consider now the pair (N0,N) of subets ofΛ defined page 47 :
N is the set of all terms which are normalizable by leftmost β-reduction ;
N0 = {(x)t1 . . . tn ; n ∈N, t1, . . . , tn ∈N }.
We put V= {X ⊂Λ; X is saturated, N0 ⊂X ⊂N }.

Lemma 8.22. V is a truth value set.

V is obviously closed by arbitrary (non void) intersection. Now, if X ,Y ∈V, we
have N0 ⊂X ,Y ⊂N and therefore :
(N →N0) ⊂ (X →Y) ⊂ (N0 →N). But we have proved, page 47, that (N0,N)

Chapter 8. System F 161

is an adapted pair, and therefore that N0 ⊂ (N → N0) and (N0 → N) ⊂ N . It
follows that N0 ⊂ (X →Y) ⊂N .

Q.E.D.

We now choose a fixed λ-variable x ; let Λx ⊂ Λ be the set of λ-terms the only
free variable of which is x (every closed term is inΛx). We put :
N x = {t ∈Λ; (∃u ∈Λx) t reduces to u by leftmost β-reduction}
N x

0 = {(x)t1 . . . tn ; n ∈N, t1, . . . , tn ∈N }.

Lemma 8.23.
i) N x

0 ⊂N x ; ii) N x
0 ⊂ (N x →N x

0) ; iii) (N x
0 →N x) ⊂N x .

Remark. This lemma means that the pair (N x
0 ,N x) is an adapted pair, as defined

page 46.

i) and ii) follow immediately from the definitions of N x and N x
0 .

iii) Let t ∈ (N x
0 → N x) ; since x ∈ N x

0 , we have t x ∈ N x , so that t x reduces
to u ∈Λx by leftmost reduction. If this reduction takes place in t , then u = v x
and t reduces to v ∈ Λx by leftmost reduction. Otherwise, t reduces to λy t ′

and t ′[x/y] reduces to u by leftmost reduction. Thus, there exists a λ-term u′

with the only free variables x, y , such that t ′ reduces to u′ by leftmost reduction.
Therefore, by leftmost reduction, t reduces to λy t ′, then to λy u′ and x is the
only free variable of λy u′.

Q.E.D.

Now, we define Vx = {X ; X is a saturated subset ofΛ, N x
0 ⊂X ⊂N x}.

Lemma 8.24. Vx is a truth value set.

We have only to check that (X →Y) ∈Vx if X ,Y ∈Vx . By definition of Vx , we
have N x

0 ⊂X ,Y ⊂N x and therefore :
(N x →N x

0) ⊂ (X →Y) ⊂ (N x
0 →N x).

Using lemma 8.23, we get N x
0 ⊂ (X →Y) ⊂N x .

Q.E.D.

We can now prove theorem 8.18. Let A be a closed ∀+-formula and t ∈ |A|. By
corollary 8.21 and lemma 8.22, we have |A| ⊂ |A|V ⊂N .
It follows that t ∈N , which means that t is normalizable.
Now, choose a λ-variable x which is not free in t .
By corollary 8.21 and lemma 8.24, we get |A| ⊂ |A|Vx ⊂N x .
It follows that t ∈ N x , which means that t reduces, by leftmost reduction, to a
term with the only free variable x. Since x is not free in t , this reduction gives a
closed term.

Q.E.D.

The next theorem gives another interesting truth value set.

162 Lambda-calculus, types and models

Theorem 8.25. Let C = {t ∈Λ; there exists a closed term t ′ such that t β t ′}. Then
{C } is a (one-element) truth value set.

Remark. By the Church-Rosser theorem 1.24, C is also the set of λ-terms which are

β-equivalent to closed terms.

Lemma 8.26.
Let ω = (λz zz)λz zz and t ∈ Λ. A step of β-reduction in t [ω/x] gives t ′[ω/x],
where t ′ = t or t ′ is obtained by a step of β-reduction in t .

Proof, by induction on the length of t . The result is immediate if t is a variable
or if t =λx u. If t = uv , then a redex in t [ω/x] = u[ω/x]v[ω/x] is either a redex in
u[ω/x], or a redex in v[ω/x], or t [ω/x] itself. In the first two cases, we simply ap-
ply the induction hypothesis. In the last case, u[ω/x] begins with aλ and, there-
fore, u = λy u′ and t = (λy u′)v . The redex we consider is (λy u′[ω/x])v[ω/x]
and its reduction gives u′[ω/x][v[ω/x]/y] = t ′[ω/x] with t ′ = u′[v/y].

Q.E.D.

Lemma 8.27. Let t ∈Λ ; if there is a closed term u such that t [ω/x]βu, then there
is a term u′ with the only free variable x, such that t βu′.

Proof by induction on the length of the given β-reduction from t [ω/x] to u. If
this length is 0, then t [ω/x] is closed and t has the only free variable x. Other-
wise, by lemma 8.26, after one step of β-reduction, we get t ′[ω/x] with t β t ′. By
the induction hypothesis, we have t ′βu′ (u′ has the only free variable x) and,
therefore, t βu′.

Q.E.D.

We can now prove the theorem 8.25. It is clear that C is a saturated set ; thus,
we only have to show : C = (C →C) and, in fact only : (C →C) ⊂C , because
the reverse inclusion is trivial.
Let t ∈ (C →C), so that we have tω ∈C and, therefore, tωβu where u is closed.
If this β-reduction takes place entirely in t , we have t β t ′ and t ′ω= u ; thus, t ′ is
closed and t ∈ C . Otherwise, we have t βλx t ′ and t ′[ω/x]βu. By lemma 8.27,
we have t ′βu′ (u′ has the only free variable x) and, therefore, t βλx u′. Since
λx u′ is closed, we get t ∈C .

Q.E.D.

This gives another proof of the second part of theorem 8.18 : if A is a closed
∀+-formula, then by corollary 8.21 withV= {C }, we obtain |A| ⊂ |A|V =C . This
shows that every term in |A| is β-equivalent to a closed term.

Consider a formula F and a type variable X ; for each free occurrence of X in F ,
we define its sign (positive or negative), inductively on the length of F :

• if F ≡ X , the occurrence of X is positive ;

Chapter 8. System F 163

• if F ≡ (G → H), the positive (resp. negative) free occurrences of X in F are
the positive (resp. negative) free occurrences of X in H and the negative (resp.
positive) free occurrences of X in G ;

• if F ≡ ∀Y G , with Y 6= X , the positive (resp. negative) free occurrences of
X in F are the positive (resp. negative) free occurrences of X in G .

Theorem 8.28. Suppose that ∀X1 . . .∀Xk F is a closed ∀+-formula which is prov-
able in system F , and that every free occurrence of X1, . . . , Xk in F is positive. If
A1, . . . , Ak are data types, then F [A1/X1, . . . , Ak /Xk] is a data type.

Remark. In fact, we may suppose only that |A1|, . . . , |Ak | ⊂ C ; the hypothesis |Ai | 6= ;
is useless.

Lemma 8.29. Let X1, . . . , Xk be distinct type variables, and I ,J be twoV-inter-
pretations such that : |Xi |VI ⊃ |Xi |VJ for 1 ≤ i ≤ k and |X |V

I
= |X |V

J
for every type

variable X 6= X1, . . . , Xk .
If X1, . . . , Xk have only positive (resp. negative) free occurrences in a formula F ,
then |F |V

I
⊃ |F |V

J
(resp. |F |V

I
⊂ |F |V

J
).

Easy proof, by induction on the length of F .
Q.E.D.

Proof of theorem 8.28.
By hypothesis, we have `F t : ∀X1 . . .∀Xk F for some t ∈Λ.
By the adequacy lemma 8.13, we deduce that t ∈ |∀X1 . . .∀Xk F | and, therefore
t ∈ |F [A1/X1, . . . , Ak /Xk]|. This shows |F [A1/X1, . . . , Ak /Xk]| 6= ;.

In lemma 8.20, we take V = {C } and W = V0 (the set of all saturated subsets of
Λ) ; I is the single V-interpretation, which is defined by |X |I = C for every
type variable X . We apply this lemma to the ∀+-formula F and we obtain :
|F |I = |F |W

I
⊂ |F |V

I
=C .

We define an interpetation J as follows : |Xi |J = |Ai | for 1 ≤ i ≤ k and |X |J =C

for any type variable X 6= X1, . . . , Xk .
Now, one hypothesis of the theorem is that |A1|, . . . , |Ak | ⊂ C . Moreover, the
variables X1, . . . , Xk have only positive occurrences in the formula F . Therefore,
the hypothesis of lemma 8.29 are fulfilled (the truth value set beingW=V0) and
it follows that |F |J ⊂ |F |I ; thus, |F |J ⊂C .
Now, |F |J is the same as |F [A1/X1, . . . , Ak /Xk]|, and therefore we obtain the de-
sired result : |F [A1/X1, . . . , Ak /Xk]| ⊂C .

Q.E.D.

References for chapter 8

[Boh85], [For83], [Gia88], [Gir71], [Gir72], [Gir86].
(The references are in the bibliography at the end of the book).

164 Lambda-calculus, types and models

Chapter 9

Second order functional arithmetic

1. Second order predicate calculus

In this chapter, we will deal with the classical second order predicate calculus,
with a syntax using the following symbols :

the logical symbols → and ∀ (and no other ones) ;
individual variables : x, y, . . . (also called first order variables) ;
n-ary relation variables (n = 0,1, . . .) : X ,Y , . . . (also called second order vari-

ables) ;
n-ary function symbols (n = 0,1, . . .) (on individuals) ;
n-ary relation symbols (n = 0,1, . . .) (on individuals).

Each relation variable, each function or relation symbol, has a fixed arity n ≥ 0.
Function symbols of arity 0 are called constant symbols. Relation variables of
arity 0 are also called propositional variables.
It is assumed that there are infinitely many individual variables and, for each
n ≥ 0, infinitely many n-ary relation variables.

The function and relation symbols determine what we call a language ; the
other symbols are common to all languages.
Let L be a language.
The (individual) terms of L are built up in the usual way, that is by the following
rules :

each individual variable, and each constant symbol, is a term ;
whenever f is an n-ary function symbol and t1, . . . , tn are terms,
f (t1, . . . , tn) is a term.

The atomic formulas are the expressions of the form A(t1, . . . , tk), where A is a
k-ary relation variable or symbol and t1, . . . , tk are terms.
The formulas are the expressions obtained by the following rules :

every atomic formula is a formula ;

165

166 Lambda-calculus, types and models

whenever F,G are formulas, (F →G) is a formula ;
whenever F is a formula, x is an individual variable and X is a relation vari-

able, ∀x F and ∀X F are formulas.

Definitions and notations
A closed term of L is a term which contains no variable. A closed formula is a
formula in which no variable occurs free.
The closure of a formula F is the formula obtained by universal quantification
of all the free variables of F .
A universal formula consists of a (finite) sequence of universal quantifiers fol-
lowed by a quantifier free formula.
The formula F1 → (F2 → (. . . → (Fn →G) . . .)) will also be denoted by :
F1,F2, . . . ,Fn →G .

Let X be a 0-ary relation variable, ξ any individual or relation variable which is
6= X , and F,G arbitrary formulas in which X does not occur free.
The formula ∀X X is denoted by ⊥ (read “ false ”).
The formula F →⊥ is denoted by ¬F (read “ not F ”).
The formula ∀X [(F → X), (G → X) → X] is denoted by F ∨G (read “ F or G ”).
The formula ∀X [(F,G → X) → X] is denoted by F ∧G (read “ F and G ”).
The formula (F →G)∧ (G → F) is denoted by F ↔G
(read “ F is equivalent to G ”).
The formula ∀X [∀ξ(F → X) → X] is denoted by ∃ξF
(read “ there exists a ξ such that F ”).

α-equivalent formulas and substitution

Let F be a formula, ξ a variable, and η the same sort of symbol as ξ (if ξ is an
individual variable, then so is η ; if ξ is an n-ary relation variable, then η is an
n-ary relation variable or symbol) ; we define the formula F<η/ξ> by replacing
in F all free occurrences of ξ by η.

We now define, by induction on F , the α-equivalence of two formulas F,G , de-
noted by F ≡G :

• if F is an atomic formula, then F ≡G if and only if F =G ;

• if F = A → B , then F ≡ G if and only if G = A′ → B ′, where A ≡ A′ and
B ≡ B ′ ;

• if F = ∀ξA, ξ being an individual or relation variable, then F ≡ G if and
only if G =∀ηB , where η is the same sort of variable as ξ, and
A<ζ/ξ> ≡ B<ζ/η> for all variables ζ of the same sort as ξ but a finite
number.

Chapter 9. Second order functional arithmetic 167

From now on, we shall identify α-equivalent formulas.
If V is a finite set of variables (of any kind), and A is a formula, then there exists
a formula A′ ≡ A, such that no variable of V is bound in A′. A′ has the same
length as A (the only difference between A and A′ is the name of the bound
variables).

Let A be a formula, x1, . . . , xk individual variables, and t1, . . . , tk terms. The for-
mula A[t1/x1, . . . , tk /xk] is defined by choosing a representative of A such that
none of its bound variables occur in the ti ’s, and then by replacing in it each
free occurrence of xi by ti (1 ≤ i ≤ n).

Consider two formulas A and F , an n-ary relation variable X , and n individual
variables x1, . . . , xn . We define the substitution of F to X (x1, . . . , xn) in A : this
produces a formula, denoted by A[F /X x1 . . . xn] ; the definition is by induction
on A and requires a representative of A such that its bound variables do not
occur in F :

• if A is an atomic formula of the form X (t1, . . . , tn), then
A[F /X x1 . . . xn] is the formula F [t1/x1, . . . , tn/xn] ;

• if A is atomic and does not start with X , then A[F /X x1 . . . xn] = A ;

• if A = B →C , then
A[F /X x1 . . . xn] = B [F /X x1 . . . xn] →C [F /X x1 . . . xn] ;

• if A =∀ξB , where ξ is an individual variable, or a relation variable differ-
ent from X , then A[F /X x1 . . . xn] =∀ξB [F /X x1 . . . xn] ;

• if A =∀X B , then A[F /X x1 . . . xn] = A.

Models

Recall briefly some classical definitions of model theory.
A second order model for the language L is a structure M consisting of :

• a domain |M | (the set of individuals, assumed non-empty) ;

• for each integer n ≥ 0, a subset |M |n of P (|M |n), which is the range for
the values of the n-ary relation variables.
If n = 0, we assume that |M |0 =P (|M |0) = {0,1} ;

• an interpretation, in |M |, of the function and relation symbols of the lan-
guage L : namely, a mapping which associates with each n-ary func-
tion symbol f of L , an n-ary function fM : |M |n → |M |, and with each
n-ary relation symbol S of L , an n-ary relation on M , that is a subset

168 Lambda-calculus, types and models

SM ⊂ |M |n . In particular, it associates with each constant symbol c an
element cM ∈ |M |.

We will say that an n-ary relation R on |M | (in other words a subset of |M |n) is
part of the model M whenever R ∈ |M |n .
The elements of |M |1 are called the classes of M .

The model M is called a full model if, for each n ≥ 0, |M |n = P (|M |n) (that is
to say : if all relations on |M | are part of the model M).

Let LM denote the language obtained by adding to L every element of |M | as
a constant symbol, and, for each n ≥ 0, every element of P (|M |n) as an n-ary
relation symbol (of course, we suppose that no symbol in L is an element of
|M | or of P (|M |n)).
The terms and formulas of LM are respectively called terms and formulas of L

with parameters in M .
There is an obvious way of extending the model M to a model for the language
LM : the new symbols of LM are their own interpretation.
With each closed term of L , with parameters in M , we associate its value
tM ∈ |M |, which is defined by induction on t :

if t is a constant symbol of LM , then tM is already defined ;
if t = f (t 1, . . . , t n), then tM = fM (t 1

M
, . . . , t n

M
).

Let F be a closed formula of L , with parameters in M . We define, by induction
on F , the expression M satisfies F , which is denoted by M |= F :

if F is an atomic formula, say R(t 1, . . . , t n), where R is an n-ary relation sym-
bol of LM , and t 1, . . . , t n are closed terms of LM , then M |= F if and only if
(t 1

M
, . . . , t n

M
) ∈ RM .

if F =G → H , then M |= F if and only if M |=G ⇒M |= H .
if F = ∀x G , x being the only free variable in G , then M |= F if and only if

M |=G<a/x> for every a ∈ |M |.
if F = ∀X G , where the n-ary relation variable X is the only free variable in

G , then M |= F if and only if M |=G<R/X> for every R ∈ |M |n .

Let A be a system of axioms of the language L (that is to say a set of closed for-
mulas, also called a theory). By a model of A , we mean a model which satisfies
all formulas of A . A closed formula F is said to be a consequence of A (which is
denoted by A ` F) if every model of A satisfies F . A closed formula F is said to
be valid (we write ` F) if it is a consequence of ;, in other words, if it is satisfied
in every model.
Clearly, for every 0-ary relation variable X , no model satisfies the formula∀X X .
This is a justification for the definition of ⊥.

Proposition 9.1. Let A,F be two formulas with parameters in M , such that the
only free variable in A is an n-ary relation variable X , and all the free variables

Chapter 9. Second order functional arithmetic 169

in F are among the individual variables x1, . . . , xn .
Let Φ = {(a1, . . . , an) ∈ |M |n ; M |= F [a1/x1, . . . , an/xn]} (which is an n-ary rela-
tion on |M |). Then M |= A[F /X x1 . . . xn] ⇔M |= A<Φ/X>.

The proof is by induction on A.
If A is atomic and starts with X , then A = X t 1 . . . t n , so :
M |= A[F /X x1 . . . xn] ⇔M |= F [t 1

M
/x1, . . . , t n

M
/xn]

⇔M |=Φ(t 1
M

, . . . , t n
M

) ⇔M |= A<Φ/X>.
If A =∀x B , where x is an individual variable, then :
M |= ∀x B [F /X x1 . . . xn] ⇔ (∀a ∈ |M |)M |= B [F /X x1 . . . xn]<a/x>

⇔ (∀a ∈ |M |)M |= B<a/x>[F /X x1 . . . xn]
⇔ (∀a ∈ |M |)M |= B<a/x><Φ/X> (by induction hypothesis)
⇔ (∀a ∈ |M |)M |= B<Φ/X><a/x>⇔M |= ∀x B<Φ/X>.

Same proof when A =∀Y B , for some relation variable Y 6= X .
The other cases of the inductive proof are trivial.

Q.E.D.

The comprehension axiom

This is an axiom scheme, denoted by C A ; it consists of the closure of all formu-
las of the following form :

(C A) ∀X A → A[F /X x1 . . . xn]

where A and F are arbitrary formulas, X is an n-ary relation variable (n ≥ 0),
and x1, . . . , xn are n individual variables.

Proposition 9.2. Every full model satisfies the comprehension axiom.

Let M be a full model, X an n-ary relation variable, x1, . . . , xn , n individual vari-
ables, A a formula with parameters in M in which X is the only free variable,
and F a formula with parameters in M in which all the free variables are among
x1, . . . , xn . Suppose M |= ∀X A, and let :
Φ= {(a1, . . . , an) ∈ |M |n ; M |= F [a1/x1, . . . , an/xn]}.
We haveΦ ∈P (|M |n) and M is full : thusΦ ∈ |M |n .
Since M |= ∀X A, we have M |= A<Φ/X> ;
therefore, by proposition 9.1, M |= A[F /X x1 . . . xn].

Q.E.D.

Given a language L , the second order predicate calculus on L is the theory
consisting of all the axioms of the comprehension scheme.
Thus a model of the second order predicate calculus on the language L is a
second order model M for L such that M |=C A.

170 Lambda-calculus, types and models

Proposition 9.3.
The comprehension axiom is equivalent to the following axiom scheme :
(C A′) ∃Y ∀x1 . . .∀xn[Y (x1, . . . , xn) ↔ F]
where Y is an n-ary relation variable (n ≥ 0) and F an arbitrary formula.

(In fact, as above, we consider the closure of the formulas of C A′).
Clearly, we have `∀X A, where A is the formula :

∃Y ∀x1 . . .∀xn[Y (x1, . . . , xn) ↔ X (x1, . . . , xn)].
Therefore C A ` A[F /X x1 . . . xn], that is to say C A `C A′.
Conversely, consider any model M of C A′. Suppose that M |= ∀X A, where X
is an n-ary relation variable, and A a formula with parameters in M , where the
only free variable is X . Let F be a formula with parameters in M and free vari-
ables among x1, . . . , xn . Let Φ = {(a1, . . . , an) ∈ |M |n ; M |= F [a1/x1, . . . , an/xn]}.
We have M |= ∃Y ∀x1 . . .∀xn[Y (x1, . . . , xn) ↔ F] by hypothesis.
Hence M |= ∀x1 . . .∀xn[Ψ(x1, . . . , xn) ↔ F] for someΨ ∈ |M |n .
Therefore : M |= ∀x1 . . .∀xn[Ψ(x1, . . . , xn) ↔Φ(x1, . . . , xn)]. It follows thatΦ=Ψ,
so Φ ∈ |M |n . Since M |= ∀X A, we have M |= A<Φ/X> ; thus, by proposi-
tion 9.1, M |= A[F /X x1 . . . xn].

Q.E.D.

Equational formulas

We consider a second order language L .
The formula ∀X [X (x) → X (y)] will be denoted by x = y . Obviously, we have
` x = x and ` x = y , y = z → x = z. Moreover, C A ` x = y → y = x (apply C A,
taking A as the formula X (x) → X (y), then replace X (y) with the formula y = x).
We also have, clearly, for every formula F (x), C A, x = y ` F (x) → F (y).
It follows that, in every model M of the second order predicate calculus, the for-
mula x = y defines an equivalence relation which is compatible with the whole
structure of the model. By taking the quotient, we thus obtain a model M ′ in
which the interpretation of the formula x = y is the identity relation. Such a
model will be called an identity model.
Now it is clear that the models M and M ′ satisfy exactly the same formulas of
L . This allows us, when we deal with models of C A, to consider only identity
models ; from now on, it is what we will do.

By an equation (or an equational formula), we mean the closure of any formula
of the form t = u (where t ,u are terms). A set of equations will also be called a
system of equational axioms.
A particular case of an equation t = u is, by definition, a formula of one of two
forms :

t [v1/x1, . . . , vk /xk] = u[v1/x1, . . . , vk /xk] or

Chapter 9. Second order functional arithmetic 171

u[v1/x1, . . . , vk /xk] = t [v1/x1, . . . , vk /xk],
where v1, . . . , vk are terms.

Proposition 9.4. Let E be a system of equational axioms in some language L ,
and u, v two terms of L .
Then C A +E ` u = v if and only if the expression `E u = v can be obtained by
means of the following rules :
i) if u = v is a particular case of an axiom of E , then `E u = v ;
ii) for all terms u, v, w of L , we have `E u = u ;
if `E u = v and `E v = w, then `E u = w ;
iii) if f is an n-ary function symbol of L , and if `E u1 = v1, . . ., `E un = vn , then
`E f (u1, . . . ,un) = f (v1, . . . , vn).

Clearly, if one obtains `E u = v by these rules, then every model of C A + E

satisfies u = v .
In order to prove the converse, we first show that `E u = v ⇒ `E v = u, by
induction on the length of the derivation of `E u = v by rules (i), (ii), (iii).
Consider the last rule used. If it is rule (i), then the result is clear (if u = v is a
particular case of an axiom of E , then so is v = u). If it is rule (ii), then `E u = w
and `E w = v are already deduced ; thus, by induction hypothesis, `E w = u
and `E v = w ; therefore `E v = u.
The proof is similar in the case of rule (iii).
Thus the relation `E u = v defined by these rules is an equivalence relation on
the set T of individual terms of L : indeed, it is reflexive and transitive by rule
(ii), and it has just been proved that it is symmetric. By rule (iii), it is compatible
with the natural interpretation of the functional symbols of L in T . It follows
that the quotient set of T by this equivalence relation is a (first order) model M
for the language L . By rule (i), this model satisfies E . By taking the full model
over M , we obtain a model of C A+E .
Now let u, v be two terms of L , such that C A +E ` u = v ; it is clear that the
considered model satisfies u = v , which means that `E u = v .

Q.E.D.

Notice that the system of axioms C A +E cannot be contradictory. Indeed, the
full model over a one element set (with the unique possible interpretation of
the function symbols) is clearly seen to satisfy C A+E .

Deduction rules for the second order predicate calculus

Consider a second order language L , and a system E of equational axioms of
L . Let A be a formula, and A = {A1, . . . , Ak } a finite set of formulas of L . By the
completeness theorem of predicate calculus (applied to the system of axioms

172 Lambda-calculus, types and models

C A+E), A is a consequence of C A+E +A if and only if the expression A `E A
can be obtained by means of the following “ deduction rules ” :

D0. For every formula A and every finite set of formulas A : A , ¬¬A `E A.
D1. For every formula A and every finite set of formulas A : A , A `E A.
D2. If A , A `E B , then A `E A → B .
D3. If A `E A and A `E A → B , then A `E B .
D4. If A `E ∀x A, then A `E A[u/x] for every term u of L .
D5. If A `E A and if the individual variable x does not occur free in A , then
A `E ∀x A.
D6. If A `E ∀X A, where X is an n-ary relation variable, and if F is any formula
of L , then A `E A[F /X x1 . . . xn].
D7. If A `E A and if the n-ary relation variable X does not occur free in A ,
then A `E ∀X A.
D8. Let A be a formula, x an individual variable and u, v two terms of L such
that u = v is a particular case of an axiom of E .
If A `E A[u/x], then A `E A[v/x].

So the meaning of the expression A `E A is : “ A is a consequence of A with
the system of equational axioms E , in the classical second order predicate cal-
culus ”.
Similarly, we define the expression : “ A is a consequence of A with the system
of equational axioms E , in the intuitionistic second order predicate calculus ” ;
this will be denoted by A `i

E
A. The definition uses rules D1 through D8 above,

but not D0.

2. System F A2

We consider a second order language L , and a system E of equational axioms
of L . We are going to describe a system of typedλ-calculus, called second order
functional arithmetic (F A2), where the types are the formulas of L (modulo α-
equivalence). When writing the typed terms of this system, we will use the same
symbols to denote the variables of the λ-calculus and the individual variables
of the language L .
A context Γ is a set of the form x1 : A1, x2 : A2, . . . , xk : Ak , where x1, x2, . . . , xk are
distinct variables of the λ-calculus, and A1, A2, . . . , Ak are formulas of L . We
will say that an individual variable x (or a relation variable X) of L is not free
in Γ if it does not occur free in A1, A2, . . . , Ak .
The rules of typing are the following (t stands for a term of the λ-calculus) :

T1. Γ, x : A `E x : A whenever x is a variable of the λ-calculus which is not
declared in Γ.

Chapter 9. Second order functional arithmetic 173

T2. If Γ, x : A `E t : B , then Γ`E λx t : A → B .
T3. If Γ`E t : A and Γ`E u : A → B , then Γ`E (u)t : B .
T4. If Γ`E t : ∀x A, and if u is a term of L , then Γ`E t : A[u/x].
T5. If Γ`E t : A, and if the individual variable x is not free in Γ,
then Γ`E t : ∀x A.
T6. If Γ`E t : ∀X A, where X is an n-ary relation variable,
then Γ`E t : A[F /X x1 . . . xn] for every formula F of L .
T7. If Γ`E t : A, and if the relation variable X is not free in Γ, then Γ`E t : ∀X A.
T8. Let u, v be two terms of L , such that u = v is a particular case of an axiom
of E , and A a formula of L . If Γ`E t : A[u/x], then Γ`E t : A[v/x].

Whenever we obtain the typing Γ `E t : A by means of these rules, we will say
that “ the λ-term t is of type A (or may be given type A) with the axioms of E , in
the context Γ ”.

Clearly, if Γ `E t : A, then all the free variables of t are declared in Γ. Thus all
terms which are typable in the empty context are closed.

The following statement, which is a form of the so called Curry-Howard corre-
spondence, is an immediate consequence of the above definitions :

There exists a term which may be given type A with the equational system E in
the context x1 : A1, x2 : A2, . . . , xk : Ak if and only if A1, A2, . . . , Ak `i

E
A.

Indeed, the constructions of typed terms by means of rules T1 through T8 cor-
respond, in an obvious and canonical way, to the intuitionistic proofs with rules
D1 through D8.

System F and the normalization theorem

The types of system F are, by definition (see chapter 8), the formulas built up
with the logical symbols ∀, →, and the 0-ary relation variables X ,Y , . . . (propo-
sitional variables). So these formulas are seen to appear in all second order
languages.
The typing rules of system F form a subsystem of the above rules : they are
rules T1, T2, T3, and T6, T7 restricted to the case n = 0.

Proposition 9.5. Given a language L and a system E of equations of L , a λ-
term t is typable with E if and only if it is typable in system F .

The condition is obviously sufficient, since the typing rules of system F form a
subsystem of rules T1, . . . , T8.
To prove the converse, we associate with each formula A of L , a formula A− of
system F , obtained by “ forgetting in A the first order part ”. The definition of
A− is by induction on A :

174 Lambda-calculus, types and models

if A is atomic, say A = X (t1, . . . , tn)(X being an n-ary relation variable or
symbol), then A− = X (which is, here, a propositional variable) ;

if A = B →C , then A− = B− →C− ;
if A =∀x B(x being an individual variable), then A− = B−.
if A =∀X B(X being an n-ary relation variable), then A− =∀X B− (X being,

here, a propositional variable).

Now consider a derivation of a typing x1 : A1, . . . , xk : Ak `E t : A, with the system
of equations E . In this derivation, replace each formula F of L by F−. We
therefore obtain a derivation, in system F , of the typing :

x1 : A−
1 , x2 : A−

2 , . . . , xk : A−
k ` t : A−.

Note that rules T4, T5 and T8 disappear after this transformation, since we have
(∀x A)− = A− and A[u/x]− = A[v/x]−.

Q.E.D.

Theorem 9.6 (Normalization theorem). Let L be a second order language and
E a system of equations of L . Then, every term of theλ-calculus which is typable
with E is strongly normalizable.

By proposition 9.5, a λ-term which is typable with E is also typable in system
F , so the result follows from the normalization theorem for that system (theo-
rem 8.9).

Q.E.D.

Derived rules for constructing typed terms

Let L be a second order language, and E a system of equations of L .

Proposition 9.7. If Γ`E t : A and Γ⊂ Γ′, then Γ′ `E t : A.

Immediate proof, by induction on the length of the derivation of Γ`E t : A.
Q.E.D.

Proposition 9.8. Let Γ be a context, and x1, . . . , xk variables which are not de-
clared in Γ. If Γ `E ti : Ai (1 ≤ i ≤ k) and Γ, x1 : A1, . . . , xk : Ak `E u : B, then
Γ`E u[t1/x1, . . . , tk /xk] : B.

In particular, if x1, . . . xk do not occur free in u, and Γ, x1 : A1, . . . , xk : Ak `E u : B ,
then Γ`E u : B .
The proof is the same as that of proposition 8.2.

Q.E.D.

Our purpose now is to prove :

Chapter 9. Second order functional arithmetic 175

Theorem 9.9.
Let t , t ′ be two λ-terms such that t β t ′ ; if Γ`E t : A, then Γ`E t ′ : A.

Recall that t β t ′ means that t ′ is obtained from t by β-reduction.

Lemma 9.10.
Let u be a term and x a variable of L . If Γ`E τ : A, then Γ[u/x] `E τ : A[u/x].

The proof is by induction on the length l of the derivation of Γ`E τ : A ; in fact
we will show that Γ[u/x] `E τ : A[u/x] also has a derivation of length l .
Consider the last rule used. The result is immediate if it is T1,T2 or T3.
If it is T4, then we have Γ`E τ : ∀y A′ (as a previous typing), and A = A′[v/y]. By
induction hypothesis, Γ[u/x] `E τ : ∀y A′[u/x] and therefore, by applying T4,
Γ[u/x] `E τ : A′[u/x][v ′/y].
Take v ′ = v[u/x] ; then A′[u/x][v ′/y] = A′[v/y][u/x] since y does not occur in
u. Hence Γ[u/x] `E τ : A[u/x].
If it is T5, then we have Γ `E τ : A′ (previous typing) and A = ∀y A′, where y
is an individual variable which is not free in Γ. If we take a variable z with no
occurrence in Γ, A′,u, then, by induction hypothesis : Γ[z/y] `E τ : A′[z/y], and
the length of this derivation is l . Now Γ[z/y] is identical to Γ. Let A′′ = A′[z/y] ;
then Γ`E τ : A′′, and therefore Γ[u/x] `E τ : A′′[u/x]. Since z does not occur in
Γ[u/x], we may apply T5, so we obtain Γ[u/x] `E τ : ∀z A′′[u/x].
Now ∀z A′′ ≡∀y A′ ≡ A ; thus Γ[u/x] `E τ : A[u/x].
If it is T6, then we have Γ`E ∀X A′ (previous typing), X being an n-ary relation
variable, and A = A′[F /X x1 . . . xn].
By induction hypothesis, Γ[u/x] `E τ : ∀X A′[u/x] ; therefore, by applying T6,
we obtain Γ[u/x] `E τ : A′[u/x][F ′/X x1 . . . xn]. Take F ′ as F [u/x] ; then :
A′[u/x][F ′/X x1 . . . xn] = A′[F /X x1 . . . xn][u/x]
(since we may assume that x1, . . . , xn do not occur in u) = A[u/x].
If it is T7, the proof is the same as for T5.
If it is T8, we have Γ`E τ : A′[v/y] (previous typing) and A = A′[w/y], v = w be-
ing a particular case of E . By induction hypothesis, Γ[u/x] `E τ : A′[v/y][u/x] ;
now, since we may assume that y does not occur in u, we also have :
A′[v/y][u/x] = A′[u/x][v ′/y], where v ′ = v[u/x].
Thus Γ[u/x] `E τ : A′[u/x][v ′/y]. Let w ′ = w[u/x] : we see that v ′ = w ′ is a
particular case of E . By rule T8, we obtain Γ[u/x] `E τ : A′[u/x][w ′/y].
Now we have A′[u/x][w ′/y] = A′[w/y][u/x] = A[u/x]. This yields the expected
conclusion.

Q.E.D.

Lemma 9.11. Let X be an n-ary relation variable of the language L .
If Γ`E τ : A, then Γ[F /X x1 . . . xn] `E τ : A[F /X x1 . . . xn].

176 Lambda-calculus, types and models

The proof of the previous lemma applies in cases 1, 2, 3, 4, 5, 7 and 8.
Suppose that the last rule applied is T6 ; then we have Γ`E τ : ∀Y A′ (as a pre-
vious typing) and A = A′[G/Y y1 . . . yp].
By induction hypothesis, Γ[F /X x1 . . . xn] `E τ : ∀Y A′[F /X x1 . . . xn] ; by applying
T6, we obtain : Γ[F /X x1 . . . xn] `E τ : A′[F /X x1 . . . xn][G ′/Y y1 . . . yp] ; if we take
G ′ as G[F /X x1 . . . xn], we see that :

A′[F /X x1 . . . xn][G ′/Y y1 . . . yp] = A′[G/Y y1 . . . yp][F /X x1 . . . xn]
(since Y does not occur in F) = A[F /X x1 . . . xn] ; this ends the proof.

Q.E.D.

Lemma 9.12. If u = v is a particular case of E and Γ[u/x] `E τ : A[u/x], then
Γ[v/x] `E τ : A[v/x].

Let Γ = x1 : A1, . . . , xk : Ak . By hypothesis, we have Γ[u/x] `E τ : A[u/x], there-
fore, by rule T8, x1 : A1[u/x], . . . , xk : Ak [u/x] `E τ : A[v/x].
Now Γ[v/x] `E xi : Ai [v/x] (rule T1) ; thus, by rule T8, Γ[v/x] `E xi : Ai [u/x].
Then it follows from proposition 9.8 that Γ[v/x] `E τ : A[v/x].

Q.E.D.

Let Γ be a context and A a formula. We define the class CΓ,A of Γ-instances of A,
which is the least class C of formulas of L which contains A and is such that :

if B ∈C , then B [t/x] ∈C whenever x is an individual variable not free in Γ,
and t is a term.

if B ∈ C , then B [F /X x1 . . . xn] ∈ C whenever X is an n-ary relation variable
not free in Γ, and F is a formula.

if B [t/x] ∈C , then B [u/x] ∈C whenever t = u is a particular case of E .

A formula is said to be open if it does not start with ∀ (so it is either atomic
or of the form B → C). Every formula F can be written ∀ξ1 . . .∀ξk F 0 where F 0

is an open formula called the interior of F (ξ1, . . . ,ξk are individual or relation
variables).

Lemma 9.13. If A′ is an open formula, and if Γ `E t : A′ can be deduced from
Γ`E t : A using only rules T4 through T8, then A′ is a Γ-instance of A0.

The proof is by induction on the number of steps in the deduction by means of
rules T4 through T8. Consider the first rule used.
If it is T5 or T7, then the first step is to pass from Γ`E t : A to Γ`E t : ∀ξA ; the
result follows immediately, since A and ∀ξA have the same interior.
If it is T4, then A can be written ∀x∀ξ1 . . .∀ξk A0, and the first step of the deriva-
tion givesΓ`E t : ∀ξ1 . . .∀ξk A0[u/x]. By induction hypothesis A′ is aΓ-instance
of A0[u/x], and thus also of A0.
If it is T6, then A can be written∀X∀ξ1 . . .∀ξk A0, and the first step of the deriva-
tion gives Γ`E t : ∀ξ1 . . .∀ξk A0[F /X x1 . . . xn]. Now A0 is an open formula :

Chapter 9. Second order functional arithmetic 177

If A0 is either an atomic formula not beginning with X , or a formula of the form
B → C , then A0[F /X x1 . . . xn] is of the same form, so it is open. By induction
hypothesis, A′ is a Γ-instance of A0[F /X x1 . . . xn], thus also of A0.
Otherwise, A0 is of the form X t1 . . . tn ; then :
A0[F /X x1 . . . xn] ≡ F [t1/x1, . . . , tn/xn] and it follows from the induction hypoth-
esis that A′ is a Γ-instance of F 0[t1/x1, . . . , tn/xn], in other words a Γ-instance of
A0[F 0/X x1 . . . xn], thus also of A0.
If it is T8, then A is written B [u/x], and the first step of the derivation gives
Γ `E t : B [v/x], u = v being a particular case of E . We have A0 = B 0[u/x], and
the interior of B [v/x] is B 0[v/x]. By induction hypothesis, A′ is a Γ-instance of
B 0[v/x], thus also of A0.

Q.E.D.

Lemma 9.14. Suppose that Γ`E t : A, where A is an open formula.
i) If t is some variable x, thenΓ contains a declaration x : B, and A is aΓ-instance
of B 0.
ii) If t =λx u, then A = B →C and Γ, x : B `E u : C .
iii) If t = (v)u, then Γ`E v : C → B and Γ`E u : C , and A is a Γ-instance of B 0.

Consider, in the derivation of Γ `E t : A, the last step where rules T1, T2 or T3
occur. Suppose that the typing obtained at this step is Γ `E t : B ; we can then
go on to Γ`E t : A using only rules T4, . . . , T8. Therefore, by lemma 9.13, A is a
Γ-instance of B 0.
If t is some variable x, the rule applied to obtain Γ`E t : B (which must be T1,
T2 or T3) can only be T1. This proves case (i) of the lemma.
If t = (v)u, the rule applied to obtain Γ`E t : B can only be T3.
This proves case (ii).
If t =λx u, the rule applied to obtain Γ`E t : B can only be T2.
Therefore B ≡C → D , and Γ,x : C `E u : D .
Since B is open, A is a Γ-instance of B .
Let C be the class of formulas P → Q such that Γ, x : P `E u : Q ; clearly, this
class contains B . We now prove that it contains the class CΓ,B of Γ-instances of
B (yielding case (ii) of the lemma, since A ∈CΓ,B) ; so let R ∈C , R ≡ P →Q.
If y is an individual variable not occurring in Γ, and v is a term, then :
Γ, x : P `E u : Q and therefore Γ, x : P [v/y] `E u : Q[v/y], by lemma 9.10.
Thus R[v/y] ∈C .
Similarly, we see, using lemma 9.11, that R[F /X x1 . . . xn] ∈ C whenever X is a
relation variable not occurring in Γ.
Now suppose that R ≡ R ′[v/y] ≡ P ′[v/y] → Q ′[v/y], and v = w is a particu-
lar case of E . By hypothesis, we have Γ, x : P ′[v/y] `E u : Q ′[v/y] ; therefore,

178 Lambda-calculus, types and models

by lemma 9.12, we also have Γ, x : P ′[w/y] `E u : Q ′[w/y], which proves that
R ′[w/y] ∈C .

Q.E.D.

Now we are able to prove theorem 9.9 : we simply repeat the proof of propo-
sition 4.3 (which is the same statement for system D), using proposition 9.8
instead of proposition 4.1, and lemma 9.14(ii) instead of lemma 4.2(ii).

Note the following derived rules :

Proposition 9.15.
If Γ`E t : A and A′ is a Γ-instance of A, then Γ`E t : A′.

Let C be the class of all formulas B such that Γ`E t : B . We prove that C con-
tains CΓ,A (the class of Γ-instances of A). Clearly, A ∈ C . Let B ∈ C . If x is
an individual variable not occurring in Γ, then Γ `E t : ∀x B (rule T5) ; thus
Γ`E t : B [u/x] for every term u (rule T4) ; therefore B [u/x] ∈C .
Similarly, it can be seen that B [F /X x1 . . . xn] ∈ C whenever X is a relation vari-
able with no occurrence in Γ (apply rule T7, then rule T6).
Finally, if B =C [u/x] and u = v is a particular case of E , then, by applying rule
T8 to Γ`E t : C [u/x], we obtain : Γ`E t : C [v/x], and therefore C [v/x] ∈C .

Q.E.D.

Proposition 9.16. Let u, v be two terms such that C A+E ` u = v.
If Γ`E t : A[u/x], then Γ`E t : A[v/x].

The expression`E u = v can be obtained by applying rules (i), (ii), (iii) of propo-
sition 9.4. We reason by induction on the number of steps in this derivation.
Consider the last rule used :

if it is rule (i), then u = v is a particular case of E . Then, by rule T8, we obtain
immediately Γ`E t : A[v/x].

if it is rule (ii), then either u = v (in that case the result is trivial), or expres-
sions of the form `E u = w and `E w = v are obtained at the previous step ;
therefore, by induction hypothesis, we have, successively, Γ `E t : A[w/x] and
Γ`E t : A[v/x].

if it is rule (iii), then we have obtained `E ui = vi (1 ≤ i ≤ n) at the previous
step, and we have u = f (u1, . . . ,un) and v = f (v1, . . . , vn).
By assumption, we have Γ`E t : A[f (u1, . . . ,un)/x]. Now we may apply, repeat-
edly (n times), the induction hypothesis ; thus we have successively :
Γ `E t : A[f (v1,u2, . . . ,un)/x], Γ `E t : A[f (v1, v2,u3 . . .un)/x], . . . , and finally
Γ`E t : A[f (v1, . . . vn)/x].

Q.E.D.

Chapter 9. Second order functional arithmetic 179

3. Realizability

Let L be a second order language. With each n-ary relation variable X , we
associate an (n+1)-ary relation variable X + (the mapping being one-one) ; with
each n-ary relation symbol R, we associate a new (n+1)-ary relation symbol R+

(not found in L). Let L + be the language obtained by adding to L these new
relation symbols, as well as the constant symbols K ,S and the binary function
symbol Ap (in case they are not already in L).

With each formula A of L , we associate a formula A+ of L +, also denoted by
x ∥− A, where x is an individual variable not occurring in A. x ∥− A should be
read : x realizes A. It is defined, by induction on A, by the following conditions :

if A is atomic, say A ≡ X (t1, . . . , tn), where the ti ’s are terms and X is an n-ary
relation variable or symbol, then x ∥− A is X +(t1, . . . , tn , x) ;

if A ≡ B → C , then x ∥− A is ∀y[y ∥−B → (x)y ∥−C] (it is assumed that the
individual variable y is distinct from x and does not occur free in A) ;

if A ≡ ∀y B , then x ∥− A is ∀y(x ∥−B) (the individual variable y is assumed
6= x) ;

if A ≡∀X B , then x ∥− A is ∀X +(x ∥−B) (X is an n-ary relation variable).

Lemma 9.17.
Let A be a formula, x, x1, . . . , xk distinct individual variables, t1, . . . , tk terms, and
A+ = x ∥− A. Then x ∥− A[t1/x1, . . . , tk /xk] is the formula A+[t1/x1, . . . , tk /xk].

This is immediate, by induction on the length of A.
Q.E.D.

Lemma 9.18. Let A,F be two formulas, x, x1, . . . , xk distinct individual variables,
X a k-ary relation variable, and F+ = x ∥−F . Then :

x ∥− A[F /X x1 . . . xk] is the formula {x ∥− A}[F+/X +x1 . . . xk x].

The proof is by induction on the length of A :
If A is atomic, then the result follows immediately from the previous lemma.
If A ≡ B →C , then x ∥− A is ∀y{y ∥−B → (x)y ∥−C }, thus
{x ∥− A}[F+/X +x1 . . . xk x] is
∀y({y ∥−B}[F+/X +x1 . . . xk x] → {(x)y ∥−C }[F+/X +x1 . . . xk x]).

By induction hypothesis, this is :
∀y{y ∥−B [F /X x1 . . . xk] → (x)y ∥−C [F /X x1 . . . xk]},

that is to say x ∥− A[F /X x1 . . . xk].
The other cases of the induction are obvious.

Q.E.D.

Notation. We shall use the correspondence between λ-terms and terms of
combinatory logic, as it was settled in chapter 6. Therefore, we use notations

180 Lambda-calculus, types and models

from that chapter : with each λ-term t , we associate a term of L , denoted
by tL .
We shall also consider the system of equational axioms C0 defined in chapter 6 :
(C0) (K)x y = x ; (S)x y z = ((x)z)(y)z.

Theorem 9.19. Let E be a system of equational axioms of L , and t a λ-term
such that x1 : A1, . . . , xk : Ak `E t : A. Then, we have :
x1 : (x1 ∥− A1), . . . , xk : (xk ∥− Ak) `E ′ t : (tL ∥− A), where E ′ is the equational sys-
tem E +C0, and tL the term of L which is associated with t .
In particular, C A+C0 +E `∀x1 . . .∀xk {x1 ∥− A1, . . . , xk ∥− Ak → tL ∥− A}.

In view of the Curry-Howard correspondence, the second part of the theorem
easily follows from the first one. Indeed, if there exists a typing of the form :
x1: (x1 ∥− A1), . . . , xk : (xk ∥− Ak) `E ′ t : (tL ∥− A), then tL ∥− A is an intuitionistic
consequence of C A,E ′, x1 ∥− A1, . . . , xk ∥− Ak ; this yields the expected result.
The proof of the first part is by induction on the length of the derivation of the
typing x1 : A1, . . . , xk : Ak `E t : A. Consider the last rule used :

If it is T1, then the given typing can be written :
x1 : A1, . . . , xk : Ak `E xi : Ai ; it is then clear that
x1 : (x1 ∥− A1), . . . , xk : (xk ∥− Ak) `E ′ xi : (xi ∥− Ai).

If it is T2, then we have t =λy u, A ≡ B →C
and x1 : A1, . . . , xk : Ak , y : B `E u : C was obtained as a previous typing. We
may suppose that y does not occur in A, A1, . . . , Ak , and that y 6= x1, . . . , xk . By
induction hypothesis :
x1 : (x1 ∥− A1), . . . , xk : (xk ∥− Ak), y : (y ∥−B) `E ′ u : (uL ∥−C).
By rule T2, we obtain
x1 : (x1 ∥− A1), . . . , xk : (xk ∥− Ak) `E ′ λy u : (y ∥−B) → (uL ∥−C).
Since y does not occur free in the formulas x1 ∥− A1, . . . , xk ∥− Ak , we have, by
rule T5 :
x1 : (x1 ∥− A1), . . . , xk : (xk ∥− Ak) `E ′ t : ∀y{y ∥−B → uL ∥−C }.
Now the equation uL = tL y is a consequence of C0, since t = λy u. Thus, by
rule T8, we obtain :
x1 : (x1 ∥− A1),. . . , xk : (xk ∥− Ak) `E ′ t : ∀y{y ∥−B → tL y ∥−C },
that is to say x1 : (x1 ∥− A1), . . ., xk : (xk ∥− Ak) `E ′ t : tL ∥−B →C .

If it is T3, then we have t = uv and two previous typings :
x1 : A1, . . . , xk : Ak `E u : B → A and x1 : A1, . . . , xk : Ak `E v : B . Therefore, by
induction hypothesis :
x1 : (x1 ∥− A1), . . ., xk : (xk ∥− Ak) `E ′ u : (uL ∥−B → A) and :
x1 : (x1 ∥− A1), . . ., xk : (xk ∥− Ak) `E ′ v : (vL ∥−B).
Now the formula uL ∥−B → A is ∀y[y ∥−B → uL y ∥− A].
By applying rule T4, we obtain :

Chapter 9. Second order functional arithmetic 181

x1 : (x1 ∥− A1), . . ., xk : (xk ∥− Ak) `E ′ u : vL ∥−B → uL vL ∥− A.
Finally, by rule T3, we deduce :
x1 : (x1 ∥− A1), . . . , xk : (xk ∥− Ak) `E ′ uv : uL vL ∥− A.

If it is T4, then A ≡ B [u/x], where u is some term of L , and we have the
previous typing x1 : A1, . . . , xk : Ak `E t : ∀x B . The induction hypothesis implies
that :
x1 : (x1 ∥− A1), . . ., xk : (xk ∥− Ak) `E ′ t : (tL ∥−∀x B), that is to say :
x1 : (x1 ∥− A1), . . . , xk : (xk ∥− Ak) `E ′ t : ∀x(tL ∥−B). By applying rule T4, we
obtain x1 : (x1 ∥− A1), . . . , xk : (xk ∥− Ak) `E ′ t : {tL ∥−B}[u/x].
Now, by lemma 9.17, the formula {tL ∥−B}[u/x] is precisely tL ∥−B [u/x].

If it is T5, then A ≡∀x B , and we have the previous typing :
x1 : A1, . . . , xk : Ak `E t : B , where x does not occur free in A1, . . . , Ak . Accord-
ing to lemma 9.10, it can be assumed that x 6= x1, . . . , xk (otherwise, change the
variable x : this does not modify A1, . . . , Ak) ; thus x does not occur free in t . By
induction hypothesis, we have :
x1 : (x1 ∥− A1), . . . , xk : (xk ∥− Ak) `E ′ t : (tL ∥−B).
Since x has no occurrence in xi ∥− Ai , by applying rule T5, we obtain :
x1 : (x1 ∥− A1),. . . , xk : (xk ∥− Ak) `E ′ t : ∀x(tL ∥−B).
Now x does not occur in tL ; therefore, the formula ∀x(tL ∥−B) is identical to
tL ∥−∀x B ; this yields the result.

If it is T6, then A ≡ B [F /X x1 . . . xn], and we have the previous typing :
x1 : A1, . . . , xk : Ak `E t : ∀X B , (X being an n-ary relation variable). By induction
hypothesis :

x1 : (x1 ∥− A1), . . . , xk : (xk ∥− Ak) `E ′ t : ∀X +(tL ∥−B) ;
therefore, by applying rule T6, we obtain

x1 : (x1 ∥− A1), . . . , xk : (xk ∥− Ak) `E ′ t : {tL ∥−B}[F+/X +x1 . . . xn x],
F+ being the formula x ∥−F . Now, by lemma 9.18, the formula :
{tL ∥−B}[F+/X +x1 . . . xn x] is precisely tL ∥−B [F /X x1 . . . xn].

If it is T7, then A ≡∀X B , and we have the previous typing :
x1 : A1, . . . , xk : Ak `E t : B , (X having no free occurrence in A1, . . . , Ak). By in-
duction hypothesis, we have :
x1 : (x1 ∥− A1), . . . , xk : (xk ∥− Ak) `E ′ t : (tL ∥−B). Since X + does not occur in
xi ∥− Ai , by applying rule T7, we obtain :
x1 : (x1 ∥− A1), . . ., xk : (xk ∥− Ak) `E ′ t : ∀X +(tL ∥−B).
Now the formula ∀X +(tL ∥−B) is identical to tL ∥−∀X B ; this yields the result.

If it is T8, then A ≡ B [v/x], and we have x1 : A1, . . . , xk : Ak `E t : B [u/x] as a
previous typing, the equation u = v being a particular case of E . By induction
hypothesis, we have :
x1 : (x1 ∥− A1), . . . , xk : (xk ∥− Ak) `E ′ t : (tL ∥−B [u/x]) ;

182 Lambda-calculus, types and models

now, by lemma 9.17, the formula tL ∥−B [u/x] is {tL ∥−B}[u/x].
Thus, by applying rule T8, we obtain :
x1 : (x1 ∥− A1), . . . , xk : (xk ∥− Ak) `E ′ t : {tL ∥−B}[v/x], which is precisely the
expected result, since {tL ∥−B}[v/x] is identical to tL ∥−B [v/x].

Q.E.D.

4. Data types

Let L be a second order language, and L + the extended language defined in
the beginning of the previous section, page 179 (so L + contains the constant
symbols K ,S and the binary function symbol Ap).
We define a standard model of L + as a full model such that its domain isΛ/'βη
(the set ofλ-terms moduloβη-equivalence) and the interpretations of the sym-
bols K ,S and Ap are the standard ones.
In other words, we will say that a full model of L + is standard if its restriction
to the language of combinatory logic is the standard model of the extensional
combinatory logic.

Let M be a standard model of L +, and D[x] a formula of L , where the individ-
ual variable x is the only free variable. We will say that D[x] defines a data type
in the model M if and only if the following conditions hold :

i) each a ∈ |M | =Λ/'βη, such that M |= D[a], is a closed λ-term ;
ii) M |= ∀x∀y{y ∥−D[x] ↔ x = y ∧D[x]}.

We now give some basic examples of data types.

Booleans.

Consider two closed terms of L , which we will denote by 0,1 (they may be con-
stant symbols, terms of combinatory logic . . .). Then :

Proposition 9.20. The formula Bool[x] ≡∀X [X 1, X 0 → X x] defines a data type
in a standard model M if and only if the interpretation of 1 (resp. 0) in M is the
Boolean 1 (resp. 0) of the λ-calculus.

Indeed y ∥−Bool[x] is the formula ∀X∀u∀v[X (1,u), X (0, v) → X (x, (y)uv)]. It
is equivalent to ∀u∀v[(x = 1∧ (y)uv = u)∨ (x = 0∧ (y)uv = v)].
Now, let M be a standard model, and y any element of |M | = Λ/'βη. We can
take u, v as two distinct variables of the λ-calculus, not occurring in y . Then
(y)uv = u (resp. v) if and only if y = 1 (resp. 0) (Booleans of the λ-calculus).
Therefore :
M |= (y ∥−Bool[x]) ↔ (x = 0∧ y = 0)∨ (x = 1∧ y = 1). Thus we see that Bool[x]
defines a data type if and only if M satisfies the formula :

Chapter 9. Second order functional arithmetic 183

(x = 0∧ y = 0)∨ (x = 1∧ y = 1) → x = y . This completes the proof of our state-
ment.

Q.E.D.

Integers.

Here we consider a closed term 0 and a term s(x) of L having no variables
but x. The integers type is then defined by the formula :

Int[x] ≡∀X [∀y(X y → X s(y)), X 0 → X x].
If M is a standard model and a ∈ |M |, then M |= Int[a] if and only if M |= a =
sn(0) for some n ∈N.

Proposition 9.21. The formula Int[x] defines a data type in a standard model
M if and only if, for every integer n, the interpretation of the term sn(0) in M is
Church numeral λ f λx(f)n x.

Indeed, y ∥− Int[x] is the formula :
∀X∀ f ∀a{∀z∀u[X (z,u) → X (s(z), (f)u)], X (0, a) → X (x, (y) f a)}.
Let x0, y0 ∈ |M | = Λ/'βη ; take f , a as two variables of the λ-calculus, not oc-
curring in the terms x0, y0, and X as the following binary relation on M :
{(sn(0), (f)n a) ; n ∈ N}. With these interpretations of f , a, X , we clearly have :
M |= ∀z∀u[X (z,u) → X (s(z), (f)u)], X (0, a).
Therefore, if M satisfies y0 ∥− Int[x0], then :
M |= X (x0, (y0) f a)), that is x0 = sn(0) and (y0) f a = (f)n a for some n ∈N. Now
f , a are variables which do not occur in y0. Hence y0 =λ f λa(f)n a.
It follows that M |= y0 ∥− Int[x0] if and only if x0 = sn(0) and y0 =λ f λa(f)n a for
some n ∈N.
Hence, if Int[x] is a data type, then M |= (y0 ∥− Int[x0]) → x0 = y0, and therefore
sn(0) = λ f λa(f)n a. Conversely, if sn(0) = λ f λa(f)n a for all n ∈ N, we have,
clearly, M |= Int[x0]∧ x0 = y0 ⇔ x0 = y0 = sn(0) for some n, thus x0 = sn(0) and
y0 =λ f λa(f)n a ; therefore, M |= y0 ∥− Int[x0].

Q.E.D.

Product of data types.

Let cpl(x, y) be a term of L , with no variables but x, y , and A[x], B [y] two for-
mulas which define data types in a standard model M . We define the prod-
uct type (A ×B)[x] as the formula ∀X {∀y∀z(A[y],B [z] → X cpl(y, z)) → X x}. If
c ∈ |M |, then M |= (A ×B)[c] if and only if M |= c = cpl(a,b), where a,b ∈ |M |
and M |= A[a],B [b].

184 Lambda-calculus, types and models

Proposition 9.22.
(A ×B)[x] defines a data type in a standard model M if and only if, for every
a,b ∈ |M | such that M |= A[a],B [b], the interpretation of cpl(a,b) in M is the
ordered pair λ f (f)ab.

u ∥− (A×B)[x] is the following formula :
∀X∀ f {∀y∀z∀v∀w[v ∥− A[y], w ∥−B [z] → X (cpl(y, z), (f)v w)] → X (x,u f)}.
Now the model M satisfies the formulas :
(v ∥− A[y]) ↔ A[y]∧ (v = y) and (w ∥−B [z]) ↔ B [z]∧ (w = z).
Thus, in M , u ∥− (A×B)[x] is equivalent to :
∀X∀ f {∀y∀z(A[y],B [z] → X (cpl(y, z), (f)y z)) → X (x,u f)}, and therefore to :
(i) ∀ f ∃y∃z{A[y]∧B [z]∧x = cpl(y, z)∧u f = (f)y z}.

Suppose that : M |= A[a],B [b] → cpl(a,b) = λ f (f)ab. Let u0, x0 ∈ |M | be such
that M |= (u0 ∥− (A×B)[x0]). Take any variable not occurring in u0 as the inter-
pretation of f . Then, by (i), there exist a,b ∈ |M | such that :
M |= A[a],B [b], x0 = cpl(a,b) and (u0) f = (f)ab.
Now a,b are closed terms, thus u0 = λ f (f)ab. Hence u0 = x0 = cpl(a,b), and
therefore M |= (A×B)[x0] ; it follows that (A×B)[x] defines a data type in M .
Conversely, suppose that (A×B)[x] defines a data type in M and let a,b ∈ |M |
be such that M |= A[a],B [b] ; take x0 = cpl(a,b) and u0 =λ f (f)ab. Then, by (i),
M satisfies u0 ∥− (A×B)[x0] ; therefore, u0 = x0, that is cpl(a,b) =λ f (f)ab.

Q.E.D.

Direct sum of data types.

Let i (x) and j (x) be two terms of L , where x is the only variable, and A[x] and
B [y] two formulas which define data types in a standard model M .
We define the direct sum type :
(A+B)[x] ≡∀X {∀y(A[y] → X i (y)),∀z(B [z] → X j (z)) → X x}.
If c ∈ |M |, then M |= (A+B)[c] if and only if :
either M |= c = i (a) for some a ∈ |M | such that M |= A[a]
or M |= c = j (b) for some b ∈ |M | such that M |= B [b].
We have the same proposition as in the previous case (with a similar proof) :

Proposition 9.23. (A +B)[x] defines a data type in a standard model M if and
only if, for each a (resp. b) ∈ |M | such that M |= A[a] (resp. B [b]), the interpre-
tation of i (a) (resp. j (b)) in M is the term λ f λg (f)a (resp. λ f λg (g)b).

Lists of elements of a data type.

Let $ be a closed term of L (for the empty list), and cons(x, y) a term of L where
x, y are the only variables. Let A[x] be a data type in a standard model M . We

Chapter 9. Second order functional arithmetic 185

define the type L A[x] (the type of lists of objects of type A) as the following
formula :

L A[x] ≡∀X {∀y∀z(A[y], X z → X cons(y, z)), X $ → X x}.
If c ∈ |M |, then M |= L A[c] if and only if

M |= c = cons(a1,cons(a2, . . . ,cons(an ,$) . . .))
where M |= A[ai] (1 ≤ i ≤ n).

Proposition 9.24. L A[x] defines a data type in a standard model M if and only
if, for all a1, . . . , an ∈ |M | such that M |= A[ai] (1 ≤ i ≤ n), the interpretation of
cons(a1,cons(a2, . . . ,cons(an ,$) . . .)) (term of L +) in M is the λ-term :
λ f λx((f)a1)((f)a2 . . . ((f)an)x.

Indeed, t ∥−L A[x] is the formula :
∀X∀ f ∀a{∀y∀z∀u∀v[u ∥− A[y], X (z, v) → X (cons(y, z), (f)uv)],

X ($, a) → X (x, (t) f a)}.
Now M satisfies u ∥− A[y] ↔ A[y]∧u = y ; thus, in M , t ∥− A[x] is equivalent
to :
∀X∀ f ∀a{∀y∀z∀v[A[y], X (z, v) → X (cons(y, z), (f)y v],

X ($, a) → X (x, (t) f a)}.
Now this formula holds in the standard model M if and only if :
(ii) for all f , a ∈ |M |, there exist a1, . . . , an ∈ |M | such that M satisfies A[ai],
x = cons(a1, . . . ,cons(an ,$) . . .), and (t) f a = ((f)a1) . . . ((f)an)a.
Suppose that M |= cons(a1, . . . ,cons(an ,$) . . .)=λ f λa((f)a1) . . . ((f)an)a when-
ever M |= A[ai]. Let t0, x0 ∈ |M | be such that M |= (t0 ∥−L A[x0]). Take two
variables not occurring in t0 as the interpretations of f and a. Then, by (ii),
there exist a1, . . . , an ∈ |M | such that M |= A[ai], x0 = cons(a1, . . . ,cons(an ,$) . . .)
and (t0) f a = ((f)a1) . . . ((f)an)a. Now, since A is a data type, the ai ’s are closed
terms ; thus t0 = λ f λa((f)a1) . . . ((f)an)a. Therefore, t0 = x0 and L A[x] defines
a data type in M .
Conversely, suppose that L A[x] defines a data type in M .
Let a1, . . . , an ∈ |M | be such that M |= A[ai] ;
take x0 = cons(a1, . . . ,cons(an ,$) . . .), and t0 =λ f λa((f)a1) . . . ((f)an)a.
Then, by (ii), M satisfies t0 ∥−L A[x0], and hence t0 = x0, that is :
cons(a1, . . . ,cons(an ,$) . . .) =λ f λa((f)a1) . . . ((f)an)a.

5. Programming in F A2

We consider a standard model M of a second order language L , and a system
E of equations of L which is satisfied in M . Let f be an n-ary function symbol
of L , and D1[x1], . . . ,Dn[xn], E [y] formulas which define data types in M . Let
D1, . . . ,Dn , E ⊂ |M | the sets of λ-terms defined in M by these formulas.

186 Lambda-calculus, types and models

Then, for every λ-term t such that :

`E t : ∀x1 . . .∀xn{D1[x1], . . . ,Dn[xn] → E [f (x1, . . . , xn)]}

we have M |= (t)u1 . . .un = f (u1, . . . ,un) for all u1 ∈ D1, . . . ,un ∈ Dn . In other
words, the term t is a program for the function f on the domain D1 × . . .×Dn .
Indeed, it then follows from theorem 9.19 that :
C A+C0 +E ` tL ∥−∀x1 . . .∀xn{D1[x1], . . . ,Dn[xn] → E [f (x1, . . . , xn)]}
that is to say :
C A+C0 +E `∀x1 . . .∀xn∀y1 . . .∀yn{y1 ∥−D1[x1], . . . , yn ∥−Dn[xn]

→ (tL)y1 . . . yn ∥−E [f (x1, . . . , xn)]}.
Therefore, this formula holds in M . According to the definition of data types,
we have M |= yi ∥−Di [xi] ↔ yi = xi ∧Di [xi]. Hence :
M |= ∀x1 . . .∀xn{D1[x1], . . . ,Dn[xn]

→ (E [f (x1, . . . , xn)]∧ (tL)x1 . . . xn = f (x1, . . . , xn))}.
Now the interpretation of the term tL in M is the λ-term t (lemma 6.22).

Thus we obtain a program for f , by proving :
D1[x1], . . . ,Dn[xn] `E E [f (x1, . . . , xn)]

in second order intuitionistic logic, by means of rules D1 through D8.

Examples with integers

Let ϕ1, . . . ,ϕn be functions such that ϕi :Nki →N ; we wish to program ϕ1, that
is to say to obtain a λ-term t such that (t)p

1
. . . p

k1
'βη ϕ1(p1, . . . , pk1) for all

Church numerals p
1
, . . . , p

k1
.

We consider a language L consisting only of functions symbols f1, . . . , fn (the
arity of fi being ki), including 0 et s, which will be interpreted inN as the integer
0 and the successor function.
Let E be the set of those equational formulas of L which are satisfied in the
following model N : the domain is N, and each symbol fi is interpreted by the
function ϕi .
We define a standard model M of E , in which the interpretation of each symbol
fi is a function ψi which extends ϕi (thus ψi is a mapping of |M |ki into |M |,
where |M | =Λ/'βη).
For that purpose, we consider the language L ′ obtained by adding to L an
infinite sequence c0, . . . ,cn , . . . of constant symbols. Let T (resp. T ′) be the set
of closed terms of L (resp. L ′).
We define an equivalence relation on T ′ by : t ∼ u ⇔ E ` t = u. Let M ′ be the
model of L ′ such that its domain is |M ′| =T ′/∼ and the function symbols are
given their canonical interpretation. Then the restriction of M ′ to the subset
T /∼ is a submodel N ′ which is obviously isomorphic to N .

Chapter 9. Second order functional arithmetic 187

Moreover, cn ∈ |M ′| \ |N ′| : otherwise, we would have E ` cn = τ, for some
closed term τ of L , and therefore E ` ∀x(x = τ), since cn occurs neither in E

nor in τ. Then N would contain only one element, but this is false (actually,
|N | is an infinite countable set).
Also, M ′ |= cm 6= cn whenever m 6= n : otherwise, we would have :
E ` cm = cn , thus E `∀x∀y(x = y),
which would lead us to the same contradiction.
It follows that |M ′|\ |N ′| is an infinite countable set.
Finally, M ′ satisfies E : indeed, let t = u be an equation of E , where t and u are
terms of L , with variables x1, . . . , xn , and let τ1, . . . ,τn ∈ T ′. We need to prove
that M ′ |= t [τ1/x1, . . . ,τn/xn] = u[τ1/x1, . . . ,τn/xn], that is to say :
E ` t [τ1/x1, . . . ,τn/xn] = u[τ1/x1, . . . ,τn/xn], which is clear.
Then the isomorphism from N ′ onto N can be extended to a one to one func-
tion from |M ′| onto Λ/'βη : indeed, since |N | is the set of Church numerals,
its complement in Λ/'βη is countable. This allows us to transfer on Λ/'βη the
structure of M ′, defining therefore over Λ/'βη a model M of E which is an
extension of N ; this is what was expected.

Remark
The above method will be systematically used in the further examples of “ program-
ming ” with various data types. It consists in extending, to the whole set Λ/'βη, func-
tions which are defined only on data types, and preserving the equations which they
satisfy. The above proof still applies, provided that the data types under consideration
do not consist of one single element.

Thus we will take, as equational system E , the set of all equational formulas satisfied by

the functions to be programmed, on their domains, and we will be allowed to assume

that E is satisfied on the whole standard model M .

The formula Int[x] ≡ ∀X {∀y(X y → X s y), X 0 → X x} is written in the language
L , using the functions symbols 0 and s. We proved above that this formula
defines a data type. In order to program the function ϕ1, it is thus sufficient to
obtain an intuitionistic proof of :
∀x1 . . .∀xk1 {Int[x1], . . . , Int[xk1] → Int[f1(x1, . . . , xk1)]}
by means of rules D1 through D8. In rule D8, we can use any equation satisfied
inN by ϕ1, . . . ,ϕn .

Consider, for instance, the language L , consisting of the symbols 0, s, +, × and
p (for the predecessor function). In order to program the successor function,
we look for an intuitionistic proof of ∀x{Int[x] → Int[s(x)]}, thus for a term of
this type.
Now we have :

ν : Int[x], f : ∀y(X y → X s y), a : X 0 ` (ν) f a : X x
(by rules T1, T6, T4). Hence :

188 Lambda-calculus, types and models

ν : Int[x], f : ∀y(X y → X s y), a : X 0 ` (f)(ν) f a : X sx ;
therefore, by rule T2 :

ν : Int[x] `λ f λa(f)(ν) f a : ∀y(X y → X s y), X 0 → X sx
and finally :
` suc : Int[x] → Int[sx], where suc is defined as λνλ f λa(f)(ν) f a.

We shall need below the derived rules stated in the next two propositions :

Proposition 9.25.
x : A, y : B `λ f (f)x y : A∧B ;
x : A∧B ` (x)1 : A ; x : A∧B ` (x)0 : B ;
x : A `λ f λg (f)x : A∨B ; y : B `λ f λg (g)y : A∨B ;
a : A[t/x] `λ f (f)a : ∃x A ;
a : A[t/x] → B `λz(a)z : ∀x A → B.

Notice that, using proposition 9.8, we obtain the following consequences :
if Γ` t : A and Γ` u : B , then Γ`λ f (f)tu : A∧B ;
if Γ` t : A∧B , then Γ` (t)1 : A and Γ` (t)0 : B ;
if Γ` t : A, then Γ`λ f λg (f)t : A∨B ;
if Γ` u : B , then Γ`λ f λg (g)u : A∨B ; etc.

Recall that A∧B , A∨B , ∃x A are, respectively, the following formulas :
∀X {(A,B → X) → X },
∀X {(A → X), (B → X) → X },
∀X {∀x(A → X) → X }.

Proof of the proposition :
x : A, y : B , f : A,B → X ` (f)x y : X by rules T1 and T3 ;
therefore, x : A, y : B `λ f (f)x y : (A,B → X) → X ;
then, by T7, we obtain the first property.
x : A∧B ` x : (A,B → A) → A by T1 and T6 ; now `λxλy x : A,B → A ;
thus x : A∧B ` (x)1 : A.
x : A, f : A → X , g : B → X ` (f)x : X ;
therefore x : A `λ f λg (f)x : (A → X), (B → X) → X ;
hence x : A `λ f λg (f)x : A∨B .
a : A[t/x], f : ∀x(A → X) ` f : A[t/x] → X by T1 and T6 ;
thus a : A[t/x], f : ∀x(A → X) ` (f)a : X ;
then a : A[t/x] `λ f (f)a : ∀x(A → X) → X ;
finally a : A[t/x] `λ f (f)a : ∃x A.
a : A[t/x] → B , z : ∀x A ` z : A[t/x] ;
thus a : A[t/x] → B , z : ∀x A ` (a)z : B ;
finally a : A[t/x] → B `λz(a)z : ∀x A[x] → B .

Q.E.D.

Chapter 9. Second order functional arithmetic 189

Proposition 9.26 (Proofs by induction onN).
i) ν : Int[x], ϕ : ∀y(A[y] → A[s y]), α : A[0] ` (ν)ϕα : A[x] ;
ii) ν : Int[x], ϕ : ∀y(A[y] → A[s y]), α : A[0], ψ : ∀z(A[z],B [z] → B [sz]), β : B [0] `
t : B [x],
where t can be taken either as :
((νλcλ f ((f)(ϕ)(c)1)((ψ)(c)1)(c)0)λg (g)αβ)0 or as :
(νλ f λaλb((f)(ϕ)a)(ψ)ab)0αβ.

(i) is immediate since, by rules T1 and T6, we have :
ν : Int[x] ` ν : ∀y(A[y] → A[s y]), A[0] → A[x].

(ii) First proof : we prove A[x]∧B [x] by induction (we mean : using (i)).
By proposition 9.25, we have : ` λg (g)αβ : A[0]∧B [0] ; on the other hand :
c : A[y]∧B [y] ` (c)1 : A[y], (c)0 : B [y] ;
thus c : A[y]∧B [y] ` (ϕ)(c)1 : A[s y], ((ψ)(c)1)(c)0 : B [s y] ; therefore :
c : A[y]∧B [y] `λ f ((f)(ϕ)(c)1)((ψ)(c)1)(c)0 : A[s y]∧B [s y] ; hence :
` τ0 : ∀y(A[y]∧B [y] → A[s y]∧B [s y]),
where τ0 =λcλ f ((f)(ϕ)(c)1)((ψ)(c)1)(c)0.
It follows that : ν : Int[x] ` (ντ0)λg (g)αβ : A[x]∧B [x], and, finally :
ν : Int[x] ` ((ντ0)λg (g)αβ)0 : B [x].

Second proof : we prove F [x] ≡ ∀y(A[y],B [y] → B [x + y]) by induction on x,
using the following equations : x +0 = x ; 0+ y = y ; x + s y = sx + y .
These equations are obviously satisfied in N, so they also hold in the standard
model, according to our remark page 187.
Clearly, ` 0 : F [0] (use rule T8 and the equation 0+ y = y).
On the other hand, we have :
f : F [z], a : A[y], b : B [y] ` (ϕ)a : A[s y], (ψ)ab : B [s y], and therefore : f : F [z],
a : A[y], b : B [y] ` ((f)(ϕ)a)(ψ)ab : B [z + s y].
Then, using the equation z + s y = sz + y , we obtain :
f : F [z] `λaλb((f)(ϕ)a)(ψ)ab : A[y],B [y] → B [sz + y].
Hence, ` τ1 : F [z] → F [sz], where τ1 =λ f λaλb((f)(ϕ)a)(ψ)ab.
According to (i) it follows that ν : Int[x] ` (ν)τ10 : F [x].
Now, by rule T4, we obtain ν : Int[x] ` (ν)τ10 : A[0],B [0] → B [x +0].
Finally, using the equation x +0 = x, we have :

ν : Int[x] ` (ν)τ10αβ : B [x].
Q.E.D.

We obtain an alternative form of the inductive reasoning :

Corollary 9.27.
We have ν : Int[x], ψ : ∀y(Int[y],B [y] → B [s y]),β : B [0] ` u : B [x], where u is the
term t [suc/ϕ,0/α], and t is defined as in proposition 9.26.

190 Lambda-calculus, types and models

This is obvious from proposition 9.26, since ` suc : ∀x(Int[x] → Int[sx]) and
` 0 : Int[0].

Q.E.D.

To program the predecessor function onN, we use the equations :
p0 = 0 ; psx = x (and, if needed, the previous equations involving +).
By rules T1 and T8, we have :
ν : Int[x], f : ∀y(X y → X s y), a : X 0 ` a : X p0, 1 : ∀y(X y, X py → X ps y).
Then we apply proposition 9.26(ii), taking A[x] ≡ X x, B [x] ≡ X px,ϕ= f ,ψ= 1,
α=β= a. Thus we obtain a term u such that :
ν : Int[x], f : ∀y(X y → X s y), a : X 0 ` u : X px ; therefore :
ν : Int[x] `λ f λa u : Int[px].
This provides the following term for the predecessor function :
λνλ f λa(νλgλbλc((g)(f)b)b)0aa.

The next proposition expresses the principle : every integer is either the suc-
cessor of an integer or 0.

Proposition 9.28. ν : Int[x] ` t : ∀X {∀y(Int[y] → X s y), X 0 → X x},
where t = (νλhλ f λa(f)((h)suc)0)0.

Let H [x] be the formula ∀X {∀y(Int[y] → X s y), X 0 → X x}. It is proved by in-
duction on x. Clearly, ` 0 : H [0]. Moreover :

h : H [z] ` h : ∀y{Int[y] → Int[s y]}, Int[0] → Int[z]
(replace X y with Int[y] in H [z]).
Since ` suc : ∀y{Int[y] → Int[s y]} and ` 0 : Int[0], we may deduce that :
h : H [z] ` ((h)suc)0 : Int[z].
Thus h : H [z], f : ∀y{Int[y] → X s y}, a : X 0 ` (f)((h)suc)0 : X sz.
Hence, `λhλ f λa(f)((h)suc)0 : ∀z(H [z] → H [sz]).
Finally, we get ν : Int[x] ` t : H [x].

Q.E.D.

We therefore obtain another λ-term for the predecessor function on N, using
the same equations as above. With this aim, we replace X x by Int[px] in propo-
sition 9.28, which gives :
ν : Int[x] ` t : ∀y(Int[y] → Int[ps y]), Int[p0] → Int[px].
Now we have ps y = y and p0 = 0, thus ` I : ∀y(Int[y] → Int[ps y]) and
` 0 : Int[p0]. It follows that we may take λν(νλhλ f λa(f)((h)suc)0)0I 0 (where
I =λx x) as a term for the predecessor function.

Examples with lists

We add to L the constant symbol $ and the binary function symbol cons. Let
A[x] be a data type ; then the type of the lists of objects of A is written :

L A[x] ≡∀X {∀y∀z(A[y], X z → X cons(y, z)), X $ → X x}.

Chapter 9. Second order functional arithmetic 191

Thus, $ represents the empty list and cons(y, z) represents the list obtained by
putting the data y in front of the list z.
For every formula F , we obviously have the following typing (inductive reason-
ing on lists) :
σ : L A[x], ϕ : ∀y∀z(A[y],F [z] → F [cons(y, z)]), α : F [$] ` (σ)ϕα : F [x].

Length of a list.
We use the equations : l ($) = 0; l (cons(y, z)) = s(l (z)).
In the context σ : L A[x], f : ∀y(X y → X s y), a : X 0, we prove X l (x) by induction
on x. By the previous equations, we have :
σ:L A[x], f :∀y(X y → X s y), a: X 0 ` a: X l ($), f : X l (z) → X l (cons(y, z)). Hence :
σ:L A[x], f :∀y(X y → X s y), a: X 0 `λx f : A[y], X l (z) → X l (cons(y, z)).
It follows that σ:L A[x], f :∀y(X y → X s y), a: X 0 ` ((σ)λx f)a: X l (x)
and therefore : ` λσλ f λa((σ)λx f)a : ∀x(L A[x] → Int[l (x)]), which provides a
λ-term for the length of lists.

Reversal (or mirror) of a list.
We add to L function symbols mir (unary) and c (binary) ; mir(x) represents
the reversal of the list x and c(y, z) the list obtained by putting the data z at the
end of the list y .
We will use the equations :

c($, a) = cons(a,$) ; c(cons(b, x), a) = cons(b,c(x, a)) ;
mir($) = $; mir(cons(a, x)) = c(mir(x), a).

In the context σ : L A[x], we prove L A[mir(x)] by induction on x.
First, we have ` 0 : L A[mir($)].
Now we need a term of type ∀y∀z(A[y],L A[mir(z)] → L A[mir(cons(y, z))]), that
is to say ∀y∀z(A[y],L A[mir(z)] → L A[c(mir(z), y)]). It suffices to obtain a term
of type : ∀y∀z(A[y],L A[z] → L A[c(z, y)]). Now we have :
α : A[y0], τ : L A[z0], f : ∀y∀z(A[y], X z → X cons(y, z)), a : X $

` (f)αa : X cons(y0,$)
and therefore ` (f)αa : X c($, y0).
On the other hand, the type ∀y∀z(A[y], X c(z, y0) → X c(cons(y, z), y0)) can also
be written: ∀y∀z(A[y], X c(z, y0) → X cons(y,c(z, y0))).
To obtain a term of this type, it suffices to obtain one of type :

∀y∀z(A[y], X z → X cons(y, z)) ;
therefore, we have :
α : A[y0], τ : L A[z0], f : ∀y∀z(A[y], X z → X cons(y, z)), a : X $

` f : ∀y∀z(A[y], X c(z, y0) → X c(cons(y, z), y0)).
Finally :
α : A[y0], τ : L A[z0], f : ∀y∀z(A[y], X z → X cons(y, z)), a : X $

` (τ f)(f)αa : X c(z0, y0),
and therefore :

192 Lambda-calculus, types and models

α : A[y0], τ : L A[z0] `λ f λa(τ f)(f)αa : L A[c(z0, y0)], that is :
`λαλτλ f λa(τ f)(f)αa : ∀y∀z(A[y],L A[z] → L A[c(z, y)]).
So we now have σ : L A[x] ` ((σ)λαλτλ f λa(τ f)(f)αa)0 : L A[mir(x)], which
provides the term λσ((σ)λαλτλ f λa(τ f)(f)αa)0 as a reversal operator for lists.

References for chapter 9

[Kri87], [Kri90], [Lei83], [Par88].
(The references are in the bibliography at the end of the book).

Chapter 10

Representable functions in system F

We wish to give a characterization of the class of those recursive functions from
N to N which are representable by a λ-term of type Int → Int in system F (in
other words, the class of functions which can be “ programmed ” in system F).

Our first remark is that this class does not contain all recursive functions ; this
can be seen by the following simple diagonal argument :
Let t0, t1, . . . , tn , . . . be a recursive enumeration of the λ-terms of type Int → Int
in system F . We define a recursive function ϕ : N → N by taking, for every
n ∈N, ϕ(n) = 1 (resp. ϕ(n) = 0) if the normal form of (tn)n is 0 (resp. is 6= 0). If
the functionϕwas represented by tn for some integer n, then (tn)n would beβ-
equivalent to the Church integerϕ(n). This is false and, therefore, the recursive
function ϕ is not in the class under consideration.

Consider the language L of combinatory logic, with the constant symbols K ,S
and the binary function symbol Ap. Recall that, with each λ-term t , we can
associate a term tL of L , such that the interpretation of tL in the standard
model of L is t (lemma 6.22).
The λ-term λnλ f λx(f)(n) f x is denoted by suc ; by abuse of notation, the
terms sucL and 0L (of L) will still be denoted, respectively, by suc and 0. We
define two formulas of L :
Int ≡∀X {(X → X) → (X → X)} (where X is a propositional variable), and
Int [x] ≡∀X {∀y(X y → X (suc)y), X 0 → X x}.
In chapter 9, we have seen that the formula Int [x] defines a data type in the
standard model of L , and therefore also in every standard model of any lan-
guage L ′ which extends L . Clearly, the interpretation of Int [x] in any stan-
dard model is the set of Church numerals.
Let T be a theory (a system of axioms) in a language L (T) ⊃L , andϕ :N→N

a recursive function ;ϕ is said to be provably total in the theory T if there exists
a term t (x) of L (T), of which x is the only variable, such that :

• T `∀x{Int [x] → Int [t (x)]} (in classical second order logic) ;

193

194 Lambda-calculus, types and models

• There exists a standard model M of T , in which the term t (x) represents
the function ϕ (in other words, for every Church numeral n, the interpretation
of t (n) in M is the Church numeral ϕ(n)).

Proposition 10.1. We have the following typings :
i) ν : (x ∥− Int) ` ν : Int [((x)suc)0] ;
ii) ν : Int [x] `C0 ((ν)suc)0 : (x ∥− Int).

Recall that the system of axioms C0 consists of both equations (K)x y = x and
(S)x y z = ((x)z)(y)z.
i) The formula x ∥− Int can be written

∀X∀ f ∀a{∀y(X y → X (f)y), X a → X (x) f a}.
Therefore, by the typing rules T1 and T4 (replace f by suc and a by 0), we im-
mediately obtain :
ν : (x ∥− Int) ` ν : ∀X {∀y(X y → X (suc)y), X 0 → X ((x)suc)0}, that is :
ν : (x ∥− Int) ` ν : Int [((x)suc)0].
ii) We prove x ∥− Int by induction on x ; 0 ∥− Int is the formula :
∀X∀ f ∀a{∀y(X y → X (f)y), X a → X (0) f a}.
Now C0 ` (0) f a = a, and we have, trivially :
` 0 : ∀X∀ f ∀a{∀y(X y → X (f)y), X a → X a}.
Hence `C0 0 : (0 ∥− Int) (rule T8).
We now look for a term of type x ∥− Int → (suc)x ∥− Int . We have :
ν : (x ∥− Int), ϕ : ∀y(X y → X (f)y), α : X a ` (ν)ϕα : X (x) f a, therefore :
ν : (x ∥− Int), ϕ : ∀y(X y → X (f)y), α : X a ` (ϕ)(ν)ϕα : X (f)(x) f a. Now :
C0 ` (suc)x f a = (f)(x) f a. By rule T8, we obtain :
ν : (x ∥− Int), ϕ : ∀y(X y → X (f)y), α : X a `C0 (ϕ)(ν)ϕα : X (suc)x f a
and therefore, by T2 :
ν : (x ∥− Int) `C0 λϕλα(ϕ)(ν)ϕα : ((suc)x ∥− Int). Hence :
`C0 suc : ∀x{x ∥− Int → (suc)x ∥− Int }.
We have proved 0 ∥− Int and ∀x{x ∥− Int → (suc)x ∥− Int } ; it follows that :
ν : Int [x] `C0 ((ν)suc)0 : (x ∥− Int).

Q.E.D.

Proposition 10.2. Let t be a λ-term such that ` t : Int → Int is a typing in
system F . Then `C0 λn(t)(n)suc 0 : ∀x{Int [x] → Int [(tL)x suc 0]} is a typing in
system F A2, with the equational axioms C0.

By theorem 9.19, we have `C0 t : tL ∥− Int → Int , that is :
(*) `C0 t : ∀x{x ∥− Int → (tL)x ∥− Int }.
By proposition 10.1(ii), n : Int [x] `C0 (n)suc 0 : x ∥− Int , and therefore, by (*)
and rule T3, we have n : Int [x] `C0 (t)(n)suc 0 : (tL)x ∥− Int . Then it follows
from proposition 10.1(i) that :

Chapter 10. Representable functions in system F 195

n : Int [x] `C0 (t)(n)suc 0 : Int [(tL)x suc 0], hence :
`C0 λn(t)(n)suc 0 : Int [x] → Int [(tL)x suc 0].

Q.E.D.

Theorem 10.3. Let t be a λ-term such that ` t : Int → Int is a typing in system
F . Then t represents a function fromN toNwhich is provably total in the theory
C A+C0.

Using proposition 10.2 and the Curry-Howard correspondence (as stated chap-
ter 9, page 173), we get C A +C0 ` ∀x{Int [x] → Int [(tL)x suc 0]}. Thus the
term (tL)x suc 0 represents a function ψ :N→N, which is provably total in the
theory C A+C0.
The term t represents a function ϕ :N→N : indeed, if n is a Church numeral,
then, in system F , we have ` n : Int , and therefore ` (t)n : Int . It follows (by
the adequacy lemma 8.13 and proposition 8.14) that (t)n is β-equivalent to a
Church numeral.
Then it is enough to prove that ϕ=ψ. The interpretation of tL in the standard
model is tLΛ 'β t (lemma 6.22). Consequently, for every Church numeral n,
the interpretation of (tL)n suc 0 in the standard model is (t)n suc 0. Now
(t)n suc 0 'β (t)n, since (t)n is a Church numeral. Hence ψ(n) =ϕ(n).

Q.E.D.

The next theorem is a strengthened converse of theorem 10.3.

Theorem 10.4. Let E be a system of equations in a language L (E) ⊃ L , and
ϕ : N→ N a function which is provably total in C A +E . Then there exists a λ-
term t, of type Int → Int in system F , which represents the function ϕ.

By hypothesis, there exist a term u(x) of L (E), the only variable of which is x,
and a standard model M of E , such that :
i) C A+E `∀x{Int [x] → Int [u(x)]} and
ii) M |= u(n) =ϕ(n) for every Church numeral n.
According to (i), the expression `E Int [x] → Int [u(x)] can be obtained by
means of the deduction rules D0 through D8 of chapter 9, page 172 (complete-
ness theorem for the classical second order predicate calculus). In view of the-
orem 10.5 below, there also exists an intuitionistic proof for this expression, that
is a proof only involving rules D1 through D8. Now, by the Curry-Howard cor-
respondence (chapter 9, page 173), such a proof provides a λ-term t such that
`E t : Int [x] → Int [u(x)] (a typed term in system F A2 with the equational ax-
ioms E).
The term t represents the function ϕ ; indeed, by theorem 9.19, we have :
C A+E +C0 ` (tL ∥− Int [x] → Int [u(x)]), that is :
C A+E +C0 `∀x∀y{y ∥− Int [x] → (tL)y ∥− Int [u(x)]}.

196 Lambda-calculus, types and models

Thus the standard model M satisfies the formula :
∀x∀y{y ∥− Int [x] → (tL)y ∥− Int [u(x)]}. Now the formula Int [x] defines a data
type, in the standard model M . Hence :
M |= ∀x∀y{y ∥− Int [x] ↔ Int [x]∧x = y}, and therefore :
M |= ∀x{Int [x] → (tL)x = u(x)}. In other words, the term (tL)x represents the
same function as u(x), that is ϕ. Since the interpretation of tL in the standard
model M is t (lemma 6.22), we see that t represents ϕ.
Finally, the term t is of type Int → Int in system F . Indeed, we have the typing
`E t : Int [x] → Int [u(x)] in system F A2. Thus we also have :
` t : Int [x]− → Int [u(x)]− as a typing in system F (see the proof of the normal-
ization theorem 9.6 for F A2).
Now this typing is simply ` t : Int → Int .

Q.E.D.

Gödel’s ¬-translation

Theorem 10.5. Let E be a system of equations in a language L (E) ⊃ L , and
σ,τ two terms of L (E). If the expression `E Int [σ] → Int [τ] can be proved in
classical second order logic (that is with rules D0 through D8, page 172), then it
can also be proved in intuitionistic second order logic (in other words, without
using rule D0).

We add to the language L (E) a propositional constant O (that is a 0-ary relation
symbol); whenever A is a formula, we will denote the formula A →O by ¬0 A.

For every formula A, we define a formula A∗, by induction, by the following
conditions :

if A is atomic, then A∗ is ¬0 A;
(A → B)∗ is A∗ → B∗;
(∀ξA)∗ is ∀ξA∗ whenever ξ is an individual variable or a relation variable.

So the formula A∗ is obtained by putting ¬0 before every atomic subformula of
A. A∗ will be called the Gödel translation of A.

Remark. This is not exactly the classical definition of the Gödel translation of A, ac-

cording to which one should put ¬0¬0 before every atomic subformula of A.

Lemma 10.6. i) ¬0¬0¬0 A `i ¬0 A ;
ii) ¬0¬0(A → B) `i ¬0¬0 A →¬0¬0B ;
iii) ¬0¬0∀ξA `i ∀ξ¬0¬0 A whenever ξ is a first or second order variable.

The notation A1, . . . , Ak `i A means that A is an intuitionistic consequence of
A1, . . . , Ak , that is to say that the expression A1, . . . , Ak ` A can be obtained by
means of the rules D1 through D8 of chapter 9 (page 172).

Chapter 10. Representable functions in system F 197

i) Remark that, if X `i Y , then ¬0Y `i ¬0X ; indeed, if Y is deduced from X ,
then O is deduced from X and Y →O.
Now, clearly, A `i ¬0¬0 A. Therefore, by the previous remark, we have :
¬0¬0¬0 A `i ¬0 A.
ii) With the premises ((A → B) → O) → O, (A → O) → O, B → O, we have to
deduce O. From B → O, we deduce (A → B) → (A → O); with (A → O) → O, we
obtain (A → B) →O.
From this and ((A → B) →O) →O, we deduce O.
iii) We wish to show ((∀ξA) → O) → O `i (A → O) → O; so with the premises
((∀ξA) → O) → O and A → O, we have to deduce O. Now we know ∀ξA `i A;
with A → O, we deduce ∀ξA → O; from this and ((∀ξA) → O) → O, we obtain
O.

Q.E.D.

Lemma 10.7. ¬0¬0 A∗ `i A∗ for every formula A.

The proof is by induction on the length of the formula A.
If A is atomic, what we have to prove is ¬0¬0¬0 A `i ¬0 A : this is precisely
lemma 10.6(i).
If A is B →C , ¬0¬0 A∗ is ¬0¬0(B∗ →C∗); by lemma 10.6(ii), we have :
¬0¬0 A∗ `i ¬0¬0B∗ →¬0¬0C∗.
Now B∗ `i ¬0¬0B∗ (obvious), and ¬0¬0C∗ `i C∗ (induction hypothesis).
Hence ¬0¬0 A∗ `i B∗ →C∗, that is ¬0¬0 A∗ `i A∗.
If A is ∀ξB , where ξ is a first order or second order variable, then ¬0¬0 A∗ is
¬0¬0∀ξB∗. By lemma 10.6(iii), we have ¬0¬0 A∗ `i ∀ξ¬0¬0B∗ and therefore
¬0¬0 A∗ `i ¬0¬0B∗. Now, by the induction hypothesis, ¬0¬0B∗ `i B∗. Thus
¬0¬0 A∗ `i B∗, and since ξ does not occur free in ¬0¬0 A∗, we have :
¬0¬0 A∗ `i ∀ξB∗, that is ¬0¬0 A∗ `i A∗.

Q.E.D.

Lemma 10.8. (¬¬A)∗ `i A∗ for every formula A.

Since ⊥ is the formula ∀X X , ⊥∗ is ∀X¬0X , that is ∀X (X → O). Therefore
O `i⊥∗ (obvious) and ⊥∗`i O (replace X by O → O in the previous formula).
Thus ⊥∗ is equivalent to O in intuitionistic logic.
(¬¬A)∗ is the formula ((A →⊥) →⊥)∗, that is (A∗ →⊥∗) →⊥∗. Thus (¬¬A)∗ `i

(A∗ →O) →O, or equivalently (¬¬A)∗ `i ¬0¬0 A∗. Then the conclusion follows
from lemma 10.7.

Q.E.D.

Lemma 10.9. Let A, B be two formulas, and X a k-ary relation variable. Then :
{A[B/X x1 . . . xk]}∗ `i A∗[¬0B∗/X x1 . . . xk] and
A∗[¬0B∗/X x1 . . . xk] `i {A[B/X x1 . . . xk]}∗.

198 Lambda-calculus, types and models

The proof is by induction on the length of A. If A is atomic and its first symbol
is X , say A ≡ X t1 . . . tk , then :

A∗[¬0B∗/X x1 . . . xk] ≡¬0¬0B∗[t1/x1, . . . , tk /xk] and
{A[B/X x1 . . . xk]}∗ ≡ B∗[t1/x1, . . . , tk /xk].

Then the result follows from lemma 10.7. The other cases of the inductive proof
are trivial.

Q.E.D.

Theorem 10.10. Let E be a system of equations in a language L (E) ⊃L , let A

be a finite set of formulas of L (E), and A ∗ = {F∗; F ∈ A }. If one can obtain
A `E A by rules D0 through D8, page 172, then one can obtain A ∗ `i

E
A∗ by

rules D1 through D8 only.

The theorem means that if A `E A can be proved in classical second order
logic, then the Gödel translation A ∗ `i

E
A∗ can be proved in intuitionistic sec-

ond order logic.

We shall prove it by induction on the length of the derivation of A `E A with
rules D0, . . . , D8. Consider the last rule used.
If it is D0, then A `E A can be written : B, ¬¬A `E A. It is enough to show that
(¬¬A)∗ `i A∗ : this was done in lemma 10.8.
If it is D1, D2, D3, D5 or D7, the result is obvious from the definition of A∗.
If it is D4 or D8, we obtain the result by proving that {A[t/x]}∗ ≡ A∗[t/x] for
every term t and every formula A of L (this is immediate, by induction on A).
If it is D6, then A ≡ B [C /X x1 . . . xk] ; by the induction hypothesis, the expression
A ∗ `i ∀X B∗ was previously deduced ; so we also obtain :

A ∗ `i B∗[¬0C∗/X x1 . . . xk].
By lemma 10.9, we finally deduce A ∗ `i {B [C /X x1 . . . xk]}∗.

Q.E.D.

Proposition 10.11. Let U , V be two formulas of L (E) such that U `i
E

U∗ and
V ∗ `i

E
¬0¬0V . If one can obtain U `E V by rules D0 through D8, then one can

obtain U `i
E

V by rules D1 through D8 only.

By theorem 10.10, U∗ `i
E

V ∗ can be obtained by rules D1 through D8. The hy-
potheses about the formulas U ,V show that one can also deduce U `i

E
¬0¬0V

by means of these rules, that is : U `i
E

(V → O) → O. Now O is a propositional
constant which does not occur in U . Thus it suffices to replace O by V to obtain
the desired result : U `i

E
V .

Q.E.D.

Any type U [x] such that U [x] `i U∗[x] will be called an input type, while a type
V [x] such that V ∗[x] `i ¬0¬0V [x] will be called an output type.

Chapter 10. Representable functions in system F 199

Proposition 10.12. The type Int [x] is an input-output one, that is to say that we
have : Int [x] `i Int∗[x], and Int∗[x] `i ¬0¬0Int [x].

Int [x] is the formula : ∀X {∀y(X y → X (suc)y), X 0 → X x}. By replacing X with
¬0X , we immediately obtain Int∗[x], which is :
∀X {∀y(¬0X y →¬0X (suc)y),¬0X 0 →¬0X x}.
Now in the formula Int∗[x], replace X x with ¬0Int [x]; the result is :
∀y(¬0¬0Int [y] →¬0¬0Int [(suc)y]),¬0¬0Int [0] →¬0¬0Int [x].
Now it can be seen easily that `i Int [y] → Int [(suc)y], so that :
`i ¬0¬0Int [y] →¬0¬0Int [(suc)y]. We also have `i Int [0], and therefore :
`i ¬0¬0Int [0]. Finally, Int∗[x] `i ¬0¬0Int [x].

Q.E.D.

Now we are able to prove theorem 10.5 : suppose that Int [σ] `E Int [τ] have
been obtained by means of rules D0, D1, . . . , D8. By proposition 10.12, we have
Int [σ] `i Int∗[σ] and Int∗[τ] `i ¬0¬0Int [τ]. Therefore, by proposition 10.11,
we can obtain Int [σ] `i

E
Int [τ] by rules D1, . . . , D8 only.

Q.E.D.

Theorems 10.3 and 10.4 provide a characterization of the class of those recur-
sive functions fromN toNwhich are represented by a λ-term of type Int → Int
in system F (and therefore also of the class of those recursive functions which
are represented by a typed λ-term in F A2, of type Int [x] → Int [t (x)], with an
arbitrary equational system E , in a language L (E) ⊃ L , t (x) being a term of
L (E)). This is the class of functions which are provably total in the theory
C A +C0 ; it is also the class of functions which are provably total in the theory
C A+E , where E is any equational system containing C0.

Undecidability of strong normalization

As an application of the above results (namely theorems 8.9 and 10.4), we will
now show :

Theorem 10.13. The set of strongly normalizable λ-terms is not recursive.

The argument is a modification of [Urz03]. We first prove :

Theorem 10.14.
Let f : N2 → {0,1} be representable by a λ-term of type Int , Int → Bool in sys-
tem F . Then, there exists a λ-termΦ, with the only free variable x, such that, for
all m ∈N :

i)Φ[m̂/x] is solvable ⇒ (∃n ∈N) f (m,n) = 1.
ii) (∃n ∈N) f (m,n) = 1 ⇒ Φ[m̂/x] is strongly normalizable.

200 Lambda-calculus, types and models

Remark. Recall that :

Int ≡∀X ((X → X), X → X) and Bool ≡∀X (X , X → X) ;

if m ∈N, then m̂ = (suc)m0 ; suc =λnλ f λx(f)(n) f x is a λ-term for the successor ;

0 = 0 =λxλy y , 1 =λxλy x.

Let φ be a λ-term which represents f , such that:

`F φ : Int , Int → Bool

Consider the following λ-term, with a free variable x :
W =λy(φx y0)λw(w)y+w , with y+ = (suc)y .

We define Φ= (W)0W and we show thatΦ has the desired property.

For each integer m, we put : W m =W [m̂/x] =λy(φm̂y0)λw(w)y+w .

Proof of (i)
Let m be a fixed integer such that f (m,n) = 0 for all n ∈N. We have :

W mn̂W m Âw ((φm̂n̂0)λw(w)n̂+w)W m .
Recall that Âw denotes the weak head reduction (see page 30).

Sinceφ represents f , we haveφm̂n̂ 'β 0 for all n ∈N. Therefore, by lemma 2.12,
we have :

((φm̂n̂0)λw(w)n̂+w)W m Âw (λw(w)n̂+w)W m Âw W mn̂+W m .
We have shown that W mn̂W m Âw W mn̂+W m for all n. But n̂+ = (suc)n̂ = p̂
with p = n +1. It follows that :
Φ[m̂/x] =W m 0̂W m Âw W m 1̂W m Âw · · · Âw W mn̂W m Âw · · ·
This infinite weak head reduction shows that Φ[m̂/x] is not solvable (theo-
rem 4.9).

Proof of (ii)
Let A = Int →∀X (X → I d) where I d =∀X (X → X). We first show that :

`F W m : Int , A → I d for every m ∈N.
Indeed, we have :
y : Int `F y+ : Int because `F suc : Int → Int .
y : Int , w : A `F w y+ : ∀X (X → I d) and therefore :
y : Int , w : A `F w y+w : I d . It follows that :
y : Int `F λw w y+w : A → I d . Now, since 0 =λxλy y , we have trivially :
y : Int `F 0 : A → I d .
But, by hypothesis, x : Int , y : Int `F φx y : Bool , and therefore :
y : Int `F (φm̂y0)λw w y+w : A → I d
(note that `F m̂ : Int , because `F 0 : Int and `F suc : Int → Int).
Thus, we get `F λy(φm̂y0)λw w y+w : Int , A → I d which is the result.

If p ∈N, then we have `F p̂ : Int . It follows that :

`F W m p̂ : A → I d for every m, p ∈N.

In particular, W m and W m p̂ are strongly normalizable (theorem 8.9).

Chapter 10. Representable functions in system F 201

Lemma 10.15. Let t , t∗, t1, . . . , tk ∈Λ such that t Âw t∗ (t∗ is obtained from t by
weak head reduction). If t and t∗t1 . . . tk are strongly normalizable, then t t1 . . . tk

is strongly normalizable.

Proof by induction on the length of the weak head reduction from t to t∗. If this
length is 0, the result is obvious, since t = t∗. Otherwise, we have :
t = (λx u)vu1 . . .ul and we put t ′ = u[v/x]u1 . . .ul . By the induction hypothesis,
we see that t ′t1 . . . tk = u[v/x]u1 . . .ul t1 . . . tk is strongly normalizable. But v is
also strongly normalizable, since t is. Therefore, by lemma 4.27 :
(λx u)vu1 . . .ul t1 . . . tk = t t1 . . . tk is strongly normalizable.

Q.E.D.

We now consider a fixed integer m such that f (m, p) = 1 for some p. Let n be
the first such p. We have to show that W m 0̂W m is strongly normalizable. In
fact we show, by a backward recursion from n to 0, that W m p̂W m is strongly
normalizable, for 0 ≤ p ≤ n. With this aim in view, we apply lemma 10.15, with
t = W m p̂, k = 1, t1 = W m . We have already proved that t and t1 are strongly
normalizable. We have :
t = (λy(φm̂y0)λw(w)y+w)p̂ Âw (φm̂p̂0)λw(w)q̂w with q = p +1,
since (suc)p̂ = q̂ .

Consider first the case p = n ; by hypothesis, we have φm̂n̂ 'β 1. Therefore, by
lemma 2.12, we have (φm̂n̂0)λw(w)q̂w Âw 0.
It follows that t =W mn̂ Âw 0 and we can take t∗ = 0.
We have to show that t∗t1, i.e. 0W m , is strongly normalizable, which is trivial,
since W m is.

Consider now the case p < n ; by hypothesis, we have φm̂p̂ 'β 0. Therefore, by
lemma 2.12, we have (φm̂p̂0)λw(w)q̂w Âw λw(w)q̂w .
It follows that t =W m p̂ Âw λw(w)q̂w and we can take t∗ =λw(w)q̂w .
We have to show that t∗t1, i.e. (λw(w)q̂w)W m , is strongly normalizable.
By lemma 4.27, it suffices to show that W m and W m q̂W m are strongly normal-
izable. This is already known for W m , and for W m q̂W m , this follows from the
induction hypothesis, since q = p +1 (we are doing a backward induction).

Q.E.D.

We shall now assume the following results from recursivity theory :

(1) For every recursively enumerable set E ⊂ N, there exists a primitive recur-
sive function f :N2 → {0,1} such that :

E = {m ∈N; (∃n ∈N) f (m,n) = 1}.
In other words, every recursively enumerable set of integers is the projection of a subset

ofN2, the characteristic function of which is primitive recursive.

(2) Every primitive recursive function is provably total in the theory C A+E for
some set E of equations.

202 Lambda-calculus, types and models

Remark. Given a primitive recursive function, the idea is simply to write down the

equations defining it and to prove with them, in classical second order logic, that this

function sends integers into integers. The details will be written in a future version of

this book.

We can now prove theorem 10.13. More precisely, we show :

Theorem 10.16. The set of strongly normalizable terms and the set of unsolvable
terms are recursively inseparable. In other words, a recursive set which contains
every strongly normalizable term must contain an unsolvable term.

Let R be a recursive set which contains every strongly normalizable term and
no unsolvable term. We choose a recursively enumerable set E ⊂Nwhich is not
recursive. Let f be a primitive recursive function, obtained by (1). By means
of (2) and theorem 10.4, we see that f is representable, in system F , by a λ-
term of type Int , Int → Bool . By theorem 10.14, we get a λ-term Φ such that,
for all m ∈N :

Φ[m̂/x] is solvable ⇒ m ∈ E ;
m ∈ E ⇒ Φ[m̂/x] is strongly normalizable.

By hypothesis on R, this gives : Φ[m̂/x] ∈R ⇔ m ∈ E .
This is a contradiction, because R is recursive and E is not.

Q.E.D.

References for chapter 10

[Fri77], [Gir71], [Gir72], [Urz03].
(The references are in the bibliography at the end of the book).

Bibliography

[Ama95] R. Amadio. A quick construction of a retraction of all retractions for
stable bifinites. Information and Computation 116(2), 1995, p. 272-274.

[Bar83] H. Barendregt, M. Coppo, M. Dezani-Ciancaglini. A filter model and
the completeness of type assignment. J. Symb. Logic 48, n◦4, 1983, p. 931-940.

[Bar84] H. Barendregt. The lambda-calculus. North Holland, 1984.

[Bera91] S. Berardi. Retractions on dI-domains as a model for Type:Type. In-
formation and Computation 94, 1991, p. 377-398.

[Berl92] C. Berline. Rétractions et interprétation interne du polymorphisme :
le problème de la rétraction universelle. Theor. Inf. and Appl. 26, n◦1, 1992,
p. 59-91.

[Berr78] G. Berry. Séquentialité de l’évaluation formelle des λ-expressions. In
Proc. 3◦ Coll. Int. sur la programmation, Paris, 1978 (Dunod, éd.).

[Boh68] C. Böhm. Alcune proprietà delle forme βη-normali nel λ-K-calcolo.
Pubblicazioni dell’Istituto per le applicazioni del calcolo 696, Rome, 1968.

[Boh85] C. Böhm, A. Berarducci. Automatic synthesis of typed λ-programs on
term algebras. Th. Comp. Sc. 39, 1985, p. 135-154.

[Bru70] N. de Bruijn. The mathematical language AUTOMATH, its usage and
some of its extensions. Symp. on automatic demonstration. Springer Lect.
Notes in Math. 125, 1970, p. 29-61.

[Chu41] A. Church. The calculi of lambda-conversion. Princeton University
Press, 1941.

[Con86] R. Constable & al. Implementing mathematics with the Nuprl proof
development system. Prentice Hall, 1986

[Cop78] M. Coppo, M. Dezani-Ciancaglini. A new type assignment forλ-terms.
Archiv. Math. Logik 19, 1978, p. 139-156.

[Cop84] M. Coppo, M. Dezani-Ciancaglini, F. Honsell, G. Longo. Extended
type structures and filter lambda models. In : Logic Colloquium 82, ed. G. Lolli
& al., North Holland, 1984, p. 241-262.

203

204 Lambda-calculus, types and models

[Coq88] T. Coquand, G. Huet. The calculus of constructions. Information and
computation 76, 1988, p. 95-120.

[Cur58] H. Curry, R. Feys. Combinatory logic. North Holland, 1958.

[Eng81] E. Engeler. Algebras and combinators. Algebra universalis 13(3), 1981,
p. 389-392.

[For83] S. Fortune, D. Leivant, M. O’Donnell. The expressiveness of simple and
second order type structures. J. Ass. Comp. Mach. 30, 1983, p. 151-185.

[Fri77] H. Friedman. Classically and intuitionistically provably recursive func-
tions. In : Higher set theory, ed. G. Müller & D. Scott, Springer Lect. Notes in
Math. 669, 1977, p. 21-27.

[Gia88] P. Giannini, S. Ronchi della Rocca. Characterization of typing in poly-
morphic type discipline. In : Proc. of Logic in Comp. Sc. 88, 1988.

[Gir71] J.-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse. In :
Proc. 2nd Scand. Logic Symp., ed. J. Fenstad, North Holland, 1971, p. 63-92.

[Gir72] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures
de l’arithmétique d’ordre supérieur. Thèse, Université Paris VII, 1972.

[Gir86] J.-Y. Girard. The system F of variable types, fifteen years later.
Th. Comp. Sc., 45, 1986, p. 159-192.

[Gir89] J.-Y. Girard, Y. Lafont, P. Taylor. Proofs and types. Cambridge Univer-
sity Press, 1989.

[Hin78] J. Hindley. Reductions of residuals are finite. Trans. Amer. Math. Soc.,
240, 1978, p. 345-361.

[Hin86] J. Hindley, J. Seldin. Introduction to combinators and λ-calculus.
Cambridge University Press, 1986.

[How80] W. Howard. The formulae-as-types notion of construction. In : To H.B.
Curry : Essays on combinatory logic, λ-calculus and formalism, ed. J. Hindley
& J. Seldin, Academic Press, 1980, p. 479-490.

[Kri87] J.-L. Krivine, M. Parigot. Programming with proofs. J. Inf. Process.
Cybern. EIK 26, 1990, 3, p. 149-167.

[Kri90] J.-L. Krivine. Opérateurs de mise en mémoire et traduction de Gödel.
Arch. Math. Logic 30, 1990, p. 241-267.

[Lei83] D. Leivant. Reasoning about functional programs and complexity
classes associated with type disciplines. 24th Annual Symp. on Found. of
Comp. Sc., 1983, p. 460-469.

Bibliography 205

[Lév80] J.-J. Lévy. Optimal reductions in the lambda-calculus. In : To H.B.
Curry : Essays on combinatory logic, λ-calculus and formalism, ed. J. Hind-
ley & J. Seldin, Academic Press, 1980, p. 159-192.

[Lon83] G. Longo. Set theoretical models of lambda-calculus : theories, expan-
sions, isomorphisms. Annals of pure and applied logic 24, 1983, p. 153-188.

[Mar79] P. Martin-Löf.Constructive mathematics and computer programming.
In : Logic, methodology and philosophy of science VI, North Holland, 1979.

[Mey82] A. Meyer. What is a model of the lambda-calculus? Information and
Control 52, 1982, p. 87-122.

[Mit79] G. Mitschke. The standardization theorem for the λ-calculus. Z. Math.
Logik Grundlag. Math. 25, 1979, p. 29-31.

[Par88] M. Parigot. Programming with proofs : a second order type theory.
Proc. ESOP’88, Lect. Notes in Comp. Sc. 300, 1988, p. 145-159.

[Plo74] G. Plotkin. The λ-calculus is ω-incomplete. J. Symb. Logic 39, 1974,
p. 313-317.

[Plo78] G. Plotkin. Tω as a universal domain. J. Comput. System Sci. 17, 1978,
p. 209-236.

[Pot80] G. Pottinger. A type assignment for the strongly normalizable λ-terms.
In : To H.B. Curry : Essays on combinatory logic, λ-calculus and formalism, ed.
J. Hindley & J. Seldin, Academic Press, 1980, p. 561-577.

[Rey74] J. Reynolds. Toward a theory of type structures. Colloque sur la pro-
grammation. Springer Lect. Notes in Comp. Sc. 19, 1974, p. 408-425.

[Ron84] S. Ronchi della Rocca, B. Venneri. Principal type schemes for an ex-
tended type theory. Th. Comp. Sc. 28, 1984, p. 151-171.

[Sco73] D. Scott. Models for various type free calculi. In : Logic, methodology
and philosophy of science IV, eds. P. Suppes & al., North Holland, 1973, p. 157-
187.

[Sco76] D. Scott. Data types as lattices. S.I.A.M. Journal on Computing, 5, 1976,
p. 522-587.

[Sco80] D. Scott. Lambda-calculus : some models, some philosophy.
In : Kleene symposium, ed. J. Barwise, North Holland, 1980, p. 223-266.

[Sco82] D. Scott. Domains for denotational semantics. Springer Lect. Notes in
Comp. Sc. 140, 1982, p. 577-613.

[Sto77] J. Stoy. Denotational semantics : the Scott-Strachey approach to pro-
gramming languages. M.I.T. Press, 1977.

206 Lambda-calculus, types and models

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific J. Math. 5, 1955, p. 285-309.

[Urz03] P. Urzyczyn. A simple proof of the undecidability of strong normaliza-
tion. Math. Struct. Comp. Sc. 3, 2003, p. 5-13.

	 Introduction
	Substitution and beta-conversion
	 Simple substitution
	 Alpha-equivalence and substitution
	 Beta-conversion
	 Eta-conversion

	Representation of recursive functions
	 Head normal forms
	 Representable functions
	 Fixed point combinators
	 The second fixed point theorem

	Intersection type systems
	 System D
	 System D
	 Typings for normal terms

	Normalization and standardization
	 Typings for normalizable terms
	Strong normalization
	I-reduction
	The I-calculus
	-reduction

	 The finite developments theorem
	 The standardization theorem

	The Böhm theorem
	Combinatory logic
	 Combinatory algebras
	 Extensionality axioms
	 Curry's equations
	 Translation of -calculus

	Models of lambda-calculus
	 Functional models
	 Spaces of continuous increasing functions
	 Spaces of initial segments
	 Applications
	 Retractions
	 Qualitative domains and stable functions

	System F
	 Definition of system F types
	 Typing rules for system F
	 The strong normalization theorem
	 Data types in system F
	 Positive second order quantifiers

	Second order functional arithmetic
	 Second order predicate calculus
	 System FA2
	 Realizability
	 Data types
	 Programming in FA2

	Representable functions in system F
	 Gödel's -translation
	 Undecidability of strong normalization

	 Bibliography

