
Rational Speech Act models are
utterance-independent updates of world priors

Jean-Philippe Bernardy, Julian Grove, and Christine Howes

Semdial 2022 - DubDial, August 23, 2022

CLASP, University of Gothenburg



Introduction to RSA



RSA (Frank and Goodman, 2012; Goodman and Frank, 2016)

u = ‘JP ate five cookies.’

JuK = ncookies ≥ 5

Three components:

• A literal listener L0:
u ↦→ PL0 (w |u)

• A pragmatic speaker S1:
w ↦→ PS1 (u|w)

• A pragmatic listener L1:
u ↦→ PL1 (w |u)

1



RSA (Frank and Goodman, 2012; Goodman and Frank, 2016)

u = ‘JP ate five cookies.’

JuK = ncookies ≥ 5

Three components:

• A literal listener L0:
u ↦→ PL0 (w |u)

• A pragmatic speaker S1:
w ↦→ PS1 (u|w)

• A pragmatic listener L1:
u ↦→ PL1 (w |u)

1



RSA (Frank and Goodman, 2012; Goodman and Frank, 2016)

u = ‘JP ate five cookies.’

JuK = ncookies ≥ 5

Three components:

• A literal listener L0:
u ↦→ PL0 (w |u)

• A pragmatic speaker S1:
w ↦→ PS1 (u|w)

• A pragmatic listener L1:
u ↦→ PL1 (w |u)

1



RSA (Frank and Goodman, 2012; Goodman and Frank, 2016)

u = ‘JP ate five cookies.’

JuK = ncookies ≥ 5

Three components:

• A literal listener L0:
u ↦→ PL0 (w |u)

• A pragmatic speaker S1:
w ↦→ PS1 (u|w)

• A pragmatic listener L1:
u ↦→ PL1 (w |u)

1



RSA (Frank and Goodman, 2012; Goodman and Frank, 2016)

u = ‘JP ate five cookies.’

JuK = ncookies ≥ 5

Three components:

• A literal listener L0:
u ↦→ PL0 (w |u)

• A pragmatic speaker S1:
w ↦→ PS1 (u|w)

• A pragmatic listener L1:
u ↦→ PL1 (w |u)

1



The literal listener L0

PL0 (w |u) ∝ 1(w ≥ n) × P (w)

w 5 6 7

‘JP ate 5 cookies’ 1/3 1/3 1/3
‘JP ate 6 cookies’ 0 1/2 1/2
‘JP ate 7 cookies’ 0 0 1

2



The pragmatic speaker S1

PS1 (u | w) ∝
PL0 (w | u)𝛼

e𝛼×C (u)

(Assume 𝛼 = 4, and that C(u) is constant.)

w 5 6 7

‘JP ate 5 cookies’ 1 0.16 0.01
‘JP ate 6 cookies’ 0 0.84 0.06
‘JP ate 7 cookies’ 0 0 0.93

3



The pragmatic listener L1

PL1 (w |u) ∝ PS1 (u|w) × P (w)

w 5 6 7

‘JP ate 5 cookies’ 0.85 0.14 0.01
‘JP ate 6 cookies’ 0 0.93 0.07
‘JP ate 7 cookies’ 0 0 1

4



Plan

• Reformulate the components of RSA as filters on reconceived
prior distributions (using information gain).

• Discuss some consequences:

• for computing RSA models;
• for the algorithmic plausibility of RSA (Marr, 1982).

5



Plan

• Reformulate the components of RSA as filters on reconceived
prior distributions (using information gain).

• Discuss some consequences:

• for computing RSA models;
• for the algorithmic plausibility of RSA (Marr, 1982).

5



Plan

• Reformulate the components of RSA as filters on reconceived
prior distributions (using information gain).

• Discuss some consequences:
• for computing RSA models;

• for the algorithmic plausibility of RSA (Marr, 1982).

5



Plan

• Reformulate the components of RSA as filters on reconceived
prior distributions (using information gain).

• Discuss some consequences:
• for computing RSA models;
• for the algorithmic plausibility of RSA (Marr, 1982).

5



RSA via information gain



Information gain as K-L divergence

Kullback-Leibler (K-L) divergence (between distributions P and Q
over X):

DKL(Q ∥ P) = −
∑︁
x∈X

Q (x) log
(
P (x)
Q (x)

)

Higher values: more information is gained by going from P to Q.

6



Information gain as K-L divergence

Kullback-Leibler (K-L) divergence (between distributions P and Q
over X):

DKL(Q ∥ P) = −
∑︁
x∈X

Q (x) log
(
P (x)
Q (x)

)
Higher values: more information is gained by going from P to Q.

6



A theorem

Theorem
If Q (x) ∝ f (x) × P (x), and the range of f is {0, 1}, then:

DKL(Q ∥ P) = − log

(∑︁
x

f (x) × P (x)
)

In words: if f updates P merely by filtering it (resulting in Q), then
the information gain of Q is the negative log of the expected value
of f .

• Important: the expected value of f is also the normalizing
constant for Q:

Q (x) = f (x) × P (x)∑
x ′ f (x ′) × P (x ′)

7



A theorem

Theorem
If Q (x) ∝ f (x) × P (x), and the range of f is {0, 1}, then:

DKL(Q ∥ P) = − log

(∑︁
x

f (x) × P (x)
)

In words: if f updates P merely by filtering it (resulting in Q), then
the information gain of Q is the negative log of the expected value
of f .

• Important: the expected value of f is also the normalizing
constant for Q:

Q (x) = f (x) × P (x)∑
x ′ f (x ′) × P (x ′)

7



A theorem

Theorem
If Q (x) ∝ f (x) × P (x), and the range of f is {0, 1}, then:

DKL(Q ∥ P) = − log

(∑︁
x

f (x) × P (x)
)

In words: if f updates P merely by filtering it (resulting in Q), then
the information gain of Q is the negative log of the expected value
of f .

• Important: the expected value of f is also the normalizing
constant for Q:

Q (x) = f (x) × P (x)∑
x ′ f (x ′) × P (x ′)

7



Reformulating the literal listener

PL0 (w |u) = l(u,w) × P (w)∑
w′∈W l(u,w ′) × P (w ′)

where l(u,w) = 1 or 0, depending on whether u is true at w

Let us define the literal information gain of u:

GL0 (u) = DKL(PL0 (w |u) ∥ P (w))

Using our theorem:

GL0 (u) = − log
∑︁

w′∈W
l(u,w ′) × P (w ′)

PL0 (w |u) = l(u,w) × P (w) × eGL0 (u)

8



Reformulating the literal listener

PL0 (w |u) = l(u,w) × P (w)∑
w′∈W l(u,w ′) × P (w ′)

where l(u,w) = 1 or 0, depending on whether u is true at w

Let us define the literal information gain of u:

GL0 (u) = DKL(PL0 (w |u) ∥ P (w))

Using our theorem:

GL0 (u) = − log
∑︁

w′∈W
l(u,w ′) × P (w ′)

PL0 (w |u) = l(u,w) × P (w) × eGL0 (u)

8



Reformulating the literal listener

PL0 (w |u) = l(u,w) × P (w)∑
w′∈W l(u,w ′) × P (w ′)

where l(u,w) = 1 or 0, depending on whether u is true at w

Let us define the literal information gain of u:

GL0 (u) = DKL(PL0 (w |u) ∥ P (w))

Using our theorem:

GL0 (u) = − log
∑︁

w′∈W
l(u,w ′) × P (w ′)

PL0 (w |u) = l(u,w) × P (w) × eGL0 (u)

8



Reformulating the literal listener

PL0 (w |u) = l(u,w) × P (w)∑
w′∈W l(u,w ′) × P (w ′)

where l(u,w) = 1 or 0, depending on whether u is true at w

Let us define the literal information gain of u:

GL0 (u) = DKL(PL0 (w |u) ∥ P (w))

Using our theorem:

GL0 (u) = − log
∑︁

w′∈W
l(u,w ′) × P (w ′)

PL0 (w |u) = l(u,w) × P (w) × eGL0 (u)

8



Reformulating the pragmatic speaker

The pragmatic speaker S1:

PS1 (u | w) ∝
PL0 (w | u)𝛼

e𝛼×C (u)

∝

(
l(u,w) × P (w) × eGL0 (u)

)𝛼
e𝛼×C (u)

∝ l(u,w)𝛼 × P (w)𝛼 × e𝛼×(GL0 (u)−C (u) )

∝ l(u,w) × e𝛼×(GL0 (u)−C (u) )

Upshot:

• l(u,w) is our filter
• PS1 (u) ∝ e𝛼×(GL0 (u)−C (u) ) is our new “prior”!

9



Reformulating the pragmatic speaker

The pragmatic speaker S1:

PS1 (u | w) ∝
PL0 (w | u)𝛼

e𝛼×C (u)

∝

(
l(u,w) × P (w) × eGL0 (u)

)𝛼
e𝛼×C (u)

∝ l(u,w)𝛼 × P (w)𝛼 × e𝛼×(GL0 (u)−C (u) )

∝ l(u,w) × e𝛼×(GL0 (u)−C (u) )

Upshot:

• l(u,w) is our filter
• PS1 (u) ∝ e𝛼×(GL0 (u)−C (u) ) is our new “prior”!

9



Reformulating the pragmatic speaker

The pragmatic speaker S1:

PS1 (u | w) ∝
PL0 (w | u)𝛼

e𝛼×C (u)

∝

(
l(u,w) × P (w) × eGL0 (u)

)𝛼
e𝛼×C (u)

∝ l(u,w)𝛼 × P (w)𝛼 × e𝛼×(GL0 (u)−C (u) )

∝ l(u,w) × e𝛼×(GL0 (u)−C (u) )

Upshot:

• l(u,w) is our filter
• PS1 (u) ∝ e𝛼×(GL0 (u)−C (u) ) is our new “prior”!

9



Reformulating the pragmatic speaker

The pragmatic speaker S1:

PS1 (u | w) ∝
PL0 (w | u)𝛼

e𝛼×C (u)

∝

(
l(u,w) × P (w) × eGL0 (u)

)𝛼
e𝛼×C (u)

∝ l(u,w)𝛼 × P (w)𝛼 × e𝛼×(GL0 (u)−C (u) )

∝ l(u,w) × e𝛼×(GL0 (u)−C (u) )

Upshot:

• l(u,w) is our filter
• PS1 (u) ∝ e𝛼×(GL0 (u)−C (u) ) is our new “prior”!

9



Reformulating the pragmatic speaker

The pragmatic speaker S1:

PS1 (u | w) ∝
PL0 (w | u)𝛼

e𝛼×C (u)

∝

(
l(u,w) × P (w) × eGL0 (u)

)𝛼
e𝛼×C (u)

∝ l(u,w)𝛼 × P (w)𝛼 × e𝛼×(GL0 (u)−C (u) )

∝ l(u,w) × e𝛼×(GL0 (u)−C (u) )

Upshot:

• l(u,w) is our filter
• PS1 (u) ∝ e𝛼×(GL0 (u)−C (u) ) is our new “prior”!

9



Reformulating the pragmatic speaker

The pragmatic speaker S1:

PS1 (u | w) ∝
PL0 (w | u)𝛼

e𝛼×C (u)

∝

(
l(u,w) × P (w) × eGL0 (u)

)𝛼
e𝛼×C (u)

∝ l(u,w)𝛼 × P (w)𝛼 × e𝛼×(GL0 (u)−C (u) )

∝ l(u,w) × e𝛼×(GL0 (u)−C (u) )

Upshot:

• l(u,w) is our filter
• PS1 (u) ∝ e𝛼×(GL0 (u)−C (u) ) is our new “prior”!

9



Reformulating the pragmatic speaker

The pragmatic speaker S1:

PS1 (u | w) ∝
PL0 (w | u)𝛼

e𝛼×C (u)

∝

(
l(u,w) × P (w) × eGL0 (u)

)𝛼
e𝛼×C (u)

∝ l(u,w)𝛼 × P (w)𝛼 × e𝛼×(GL0 (u)−C (u) )

∝ l(u,w) × e𝛼×(GL0 (u)−C (u) )

Upshot:

• l(u,w) is our filter

• PS1 (u) ∝ e𝛼×(GL0 (u)−C (u) ) is our new “prior”!

9



Reformulating the pragmatic speaker

The pragmatic speaker S1:

PS1 (u | w) ∝
PL0 (w | u)𝛼

e𝛼×C (u)

∝

(
l(u,w) × P (w) × eGL0 (u)

)𝛼
e𝛼×C (u)

∝ l(u,w)𝛼 × P (w)𝛼 × e𝛼×(GL0 (u)−C (u) )

∝ l(u,w) × e𝛼×(GL0 (u)−C (u) )

Upshot:

• l(u,w) is our filter
• PS1 (u) ∝ e𝛼×(GL0 (u)−C (u) ) is our new “prior”!

9



Reformulating the pragmatic speaker: example

J‘JP ran u km’K = w ≥ u

PS1 (u) ∝ e𝛼×(GL0 (u)−C (u) )

w
0

0.05
0.1
0.15
0.2
0.25
0.3
0.35

0 1 2 3 4 5 6 7 8

Prior over JP’s running distance

u
0

5x106
1x107

1.5x107
2x107

2.5x107
3x107

0 1 2 3 4 5 6 7

PS1 (u|w = 7) with 𝛼 = 4

10



Reformulating the pragmatic speaker: example

J‘JP ran u km’K = w ≥ u

PS1 (u) ∝ e𝛼×(GL0 (u)−C (u) )

w
0

0.05
0.1
0.15
0.2
0.25
0.3
0.35

0 1 2 3 4 5 6 7 8

Prior over JP’s running distance

u
0

5x106
1x107

1.5x107
2x107

2.5x107
3x107

0 1 2 3 4 5 6 7

PS1 (u|w = 7) with 𝛼 = 4

10



Reformulating the pragmatic speaker: example

J‘JP ran u km’K = w ≥ u

PS1 (u) ∝ e𝛼×(GL0 (u)−C (u) )

w
0

0.05
0.1
0.15
0.2
0.25
0.3
0.35

0 1 2 3 4 5 6 7 8

Prior over JP’s running distance

u
0

5x106
1x107

1.5x107
2x107

2.5x107
3x107

0 1 2 3 4 5 6 7

PS1 (u|w = 7) with 𝛼 = 4
10



Making the normalizing constant explicit

As a proportion:

PS1 (u|w) ∝ l(u,w) × PS1 (u)

Normalizing:

PS1 (u|w) =
l(u,w) × PS1 (u)∑

u′∈U l(u′,w) × PS1 (u′)

= l(u,w) × PS1 (u) × eGS1 (w )

GS1 (w) = − log
∑︁
u∈U

l(u,w) × PS1 (u)

the specificity of w

11



Making the normalizing constant explicit

As a proportion:

PS1 (u|w) ∝ l(u,w) × PS1 (u)

Normalizing:

PS1 (u|w) =
l(u,w) × PS1 (u)∑

u′∈U l(u′,w) × PS1 (u′)

= l(u,w) × PS1 (u) × eGS1 (w )

GS1 (w) = − log
∑︁
u∈U

l(u,w) × PS1 (u)

the specificity of w

11



Making the normalizing constant explicit

As a proportion:

PS1 (u|w) ∝ l(u,w) × PS1 (u)

Normalizing:

PS1 (u|w) =
l(u,w) × PS1 (u)∑

u′∈U l(u′,w) × PS1 (u′)

= l(u,w) × PS1 (u) × eGS1 (w )

GS1 (w) = − log
∑︁
u∈U

l(u,w) × PS1 (u)

the specificity of w

11



Making the normalizing constant explicit

As a proportion:

PS1 (u|w) ∝ l(u,w) × PS1 (u)

Normalizing:

PS1 (u|w) =
l(u,w) × PS1 (u)∑

u′∈U l(u′,w) × PS1 (u′)

= l(u,w) × PS1 (u) × eGS1 (w )

GS1 (w) = − log
∑︁
u∈U

l(u,w) × PS1 (u)

the specificity of w

11



Making the normalizing constant explicit

As a proportion:

PS1 (u|w) ∝ l(u,w) × PS1 (u)

Normalizing:

PS1 (u|w) =
l(u,w) × PS1 (u)∑

u′∈U l(u′,w) × PS1 (u′)

= l(u,w) × PS1 (u) × eGS1 (w )

GS1 (w) = − log
∑︁
u∈U

l(u,w) × PS1 (u)

the specificity of w

11



Reformulating the pragmatic listener

The pragmatic listener L1:

PL1 (w |u) ∝ PS1 (u|w) × P (w)

∝ l(u,w) × PS1 (u) × eGS1 (w ) × P (w)

∝ l(u,w) × eGS1 (w ) × P (w)

Define PL1 (w) = eGS1 (w ) × P (w) as our new prior!

Upshot:
PL1 (w |u) ∝ l(u,w) × PL1 (w)

12



Reformulating the pragmatic listener

The pragmatic listener L1:

PL1 (w |u) ∝ PS1 (u|w) × P (w)

∝ l(u,w) × PS1 (u) × eGS1 (w ) × P (w)

∝ l(u,w) × eGS1 (w ) × P (w)

Define PL1 (w) = eGS1 (w ) × P (w) as our new prior!

Upshot:
PL1 (w |u) ∝ l(u,w) × PL1 (w)

12



Reformulating the pragmatic listener

The pragmatic listener L1:

PL1 (w |u) ∝ PS1 (u|w) × P (w)

∝ l(u,w) × PS1 (u) × eGS1 (w ) × P (w)

∝ l(u,w) × eGS1 (w ) × P (w)

Define PL1 (w) = eGS1 (w ) × P (w) as our new prior!

Upshot:
PL1 (w |u) ∝ l(u,w) × PL1 (w)

12



Reformulating the pragmatic listener

The pragmatic listener L1:

PL1 (w |u) ∝ PS1 (u|w) × P (w)

∝ l(u,w) × PS1 (u) × eGS1 (w ) × P (w)

∝ l(u,w) × eGS1 (w ) × P (w)

Define PL1 (w) = eGS1 (w ) × P (w) as our new prior!

Upshot:
PL1 (w |u) ∝ l(u,w) × PL1 (w)

12



Reformulating the pragmatic listener

The pragmatic listener L1:

PL1 (w |u) ∝ PS1 (u|w) × P (w)

∝ l(u,w) × PS1 (u) × eGS1 (w ) × P (w)

∝ l(u,w) × eGS1 (w ) × P (w)

Define PL1 (w) = eGS1 (w ) × P (w) as our new prior!

Upshot:
PL1 (w |u) ∝ l(u,w) × PL1 (w)

12



Reformulating the pragmatic listener

The pragmatic listener L1:

PL1 (w |u) ∝ PS1 (u|w) × P (w)

∝ l(u,w) × PS1 (u) × eGS1 (w ) × P (w)

∝ l(u,w) × eGS1 (w ) × P (w)

Define PL1 (w) = eGS1 (w ) × P (w) as our new prior!

Upshot:
PL1 (w |u) ∝ l(u,w) × PL1 (w)

12



Reformulating the pragmatic listener: example

w

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8

P (w)

(JP’s distance prior)

w

0

2

4

6

8

10

1 2 3 4 5 6 7

× eGS1 (w )

(specificity)

w

literalpragmatic 𝛼=1pragmatic 𝛼=4pragmatic 𝛼=20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7

= PL1 (w)

(L1 “pragmatic” prior)

13



Some consequences



Computing RSA models

Main result:
PL1 (w |u) ∝ l(u,w) × PL1 (w)

The “pragmatic” interpretation of ‘JP ran 2.4 km’ is gotten by simply
cropping PL1 (w) and normalizing:

w

literalpragmatic 𝛼=1pragmatic 𝛼=4pragmatic 𝛼=20

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

(Side note: the expected implicature is generated for large 𝛼 only!)

14



Computing RSA models

Main result:
PL1 (w |u) ∝ l(u,w) × PL1 (w)

The “pragmatic” interpretation of ‘JP ran 2.4 km’ is gotten by simply
cropping PL1 (w) and normalizing:

w

literalpragmatic 𝛼=1pragmatic 𝛼=4pragmatic 𝛼=20

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

(Side note: the expected implicature is generated for large 𝛼 only!)

14



Computing RSA models

Main result:
PL1 (w |u) ∝ l(u,w) × PL1 (w)

The “pragmatic” interpretation of ‘JP ran 2.4 km’ is gotten by simply
cropping PL1 (w) and normalizing:

w

literalpragmatic 𝛼=1pragmatic 𝛼=4pragmatic 𝛼=20

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

(Side note: the expected implicature is generated for large 𝛼 only!) 14



Algorithmic plausibility

From an algorithmic perspective (Marr, 1982), pragmatic
interpretations (as according to RSA models) can be obtained the
same way as literal interpretations: by filtering a certain prior by
the literal meaning of the utterance.

• For literal interpretations, this prior is P (w).
• For pragmatic interpretations, this prior is PL1 (w).

(RSA-style) pragmatic interpretations can be learned, just as
probability distributions over events can; pragmatic distributions
are additionally sensitive to an event’s specificity.

15



Algorithmic plausibility

From an algorithmic perspective (Marr, 1982), pragmatic
interpretations (as according to RSA models) can be obtained the
same way as literal interpretations: by filtering a certain prior by
the literal meaning of the utterance.

• For literal interpretations, this prior is P (w).

• For pragmatic interpretations, this prior is PL1 (w).

(RSA-style) pragmatic interpretations can be learned, just as
probability distributions over events can; pragmatic distributions
are additionally sensitive to an event’s specificity.

15



Algorithmic plausibility

From an algorithmic perspective (Marr, 1982), pragmatic
interpretations (as according to RSA models) can be obtained the
same way as literal interpretations: by filtering a certain prior by
the literal meaning of the utterance.

• For literal interpretations, this prior is P (w).
• For pragmatic interpretations, this prior is PL1 (w).

(RSA-style) pragmatic interpretations can be learned, just as
probability distributions over events can; pragmatic distributions
are additionally sensitive to an event’s specificity.

15



Algorithmic plausibility

From an algorithmic perspective (Marr, 1982), pragmatic
interpretations (as according to RSA models) can be obtained the
same way as literal interpretations: by filtering a certain prior by
the literal meaning of the utterance.

• For literal interpretations, this prior is P (w).
• For pragmatic interpretations, this prior is PL1 (w).

(RSA-style) pragmatic interpretations can be learned, just as
probability distributions over events can; pragmatic distributions
are additionally sensitive to an event’s specificity.

15



Algorithmic plausibility

From an algorithmic perspective (Marr, 1982), pragmatic
interpretations (as according to RSA models) can be obtained the
same way as literal interpretations: by filtering a certain prior by
the literal meaning of the utterance.

• For literal interpretations, this prior is P (w).
• For pragmatic interpretations, this prior is PL1 (w).

(RSA-style) pragmatic interpretations can be learned, just as
probability distributions over events can; pragmatic distributions
are additionally sensitive to an event’s specificity.

15



References i

References

Frank, Michael C., and Noah D. Goodman. 2012. Predicting
pragmatic reasoning in language games. Science 336:998 – 998.

Goodman, Noah D., and Michael C. Frank. 2016. Pragmatic
Language Interpretation as Probabilistic Inference. Trends in
Cognitive Sciences 20:818–829. https://www.sciencedirect.
com/science/article/pii/S136466131630122X.

Marr, David. 1982. Vision: A Computational Investigation into the
Human Representation and Processing of Visual Information.
Cambridge: MIT Press.

16

https://www.sciencedirect.com/science/article/pii/S136466131630122X
https://www.sciencedirect.com/science/article/pii/S136466131630122X

	Introduction to RSA
	RSA via information gain
	Some consequences
	References

