Rational Speech Act models are utterance-independent updates of world priors

Jean-Philippe Bernardy, Julian Grove, and Christine Howes Semdial 2022 - DubDial, August 23, 2022

CLASP, University of Gothenburg

Introduction to RSA

Three components:

Three components:

• A literal listener L_0 : $u \mapsto P_{L_0}(w|u)$

Three components:

- A literal listener L_0 : $u \mapsto P_{L_0}(w|u)$
- A pragmatic speaker S_1 : $w \mapsto P_{S_1}(u|w)$

Three components:

- A literal listener L_0 : $u \mapsto P_{L_0}(w|u)$
- A pragmatic speaker S_1 : $w \mapsto P_{S_1}(u|w)$
- A pragmatic listener L_1 : $u \mapsto P_{L_1}(w|u)$

$$P_{L_0}(w|u) \propto \mathbb{1}(w \ge n) \times P(w)$$

W	5	6	7
'JP ate 5 cookies'	1/3	1/3	1/3
'JP ate 6 cookies'	0	1/2	1/2
'JP ate 7 cookies'	0	0	1

$$P_{S_1}(u \mid w) \propto \frac{P_{L_0}(w \mid u)^{\alpha}}{e^{\alpha \times C(u)}}$$

(Assume α = 4, and that *C*(*u*) is constant.)

W	5	6	7
'JP ate 5 cookies'	1	0.16	0.01
'JP ate 6 cookies'	0	0.84	0.06
'JP ate 7 cookies'	0	0	0.93

$$P_{L_1}(w|u) \propto P_{S_1}(u|w) \times P(w)$$

W	5	6	7
'JP ate 5 cookies'	0.85	0.14	0.01
'JP ate 6 cookies'	0	0.93	0.07
'JP ate 7 cookies'	0	0	1

• Reformulate the components of RSA as *filters* on reconceived prior distributions (using information gain).

- Reformulate the components of RSA as *filters* on reconceived prior distributions (using information gain).
- Discuss some consequences:

- Reformulate the components of RSA as *filters* on reconceived prior distributions (using information gain).
- Discuss some consequences:
 - for computing RSA models;

- Reformulate the components of RSA as *filters* on reconceived prior distributions (using information gain).
- Discuss some consequences:
 - for computing RSA models;
 - for the algorithmic plausibility of RSA (Marr, 1982).

RSA via information gain

Kullback-Leibler (K-L) divergence (between distributions P and Q over X):

$$D_{\mathrm{KL}}(Q \parallel P) = -\sum_{x \in \mathcal{X}} Q(x) \log \left(\frac{P(x)}{Q(x)}\right)$$

Kullback-Leibler (K-L) divergence (between distributions P and Q over X):

$$D_{\mathsf{KL}}(Q \parallel P) = -\sum_{x \in \mathcal{X}} Q(x) \log \left(\frac{P(x)}{Q(x)}\right)$$

Higher values: more information is gained by going from P to Q.

A theorem

Theorem

If $Q(x) \propto f(x) \times P(x)$, and the range of f is {0, 1}, then:

$$D_{\mathsf{KL}}(Q \parallel P) = -\log\left(\sum_{x} f(x) \times P(x)\right)$$

A theorem

Theorem

If $Q(x) \propto f(x) \times P(x)$, and the range of f is {0, 1}, then:

$$D_{\mathsf{KL}}(Q \parallel P) = -\log\left(\sum_{x} f(x) \times P(x)\right)$$

In words: if f updates P merely by *filtering* it (resulting in Q), then the information gain of Q is the negative log of the expected value of f.

A theorem

Theorem

If $Q(x) \propto f(x) \times P(x)$, and the range of f is {0, 1}, then:

$$D_{\mathsf{KL}}(Q \parallel P) = -\log\left(\sum_{x} f(x) \times P(x)\right)$$

In words: if f updates P merely by *filtering* it (resulting in Q), then the information gain of Q is the negative log of the expected value of f.

• Important: the expected value of *f* is *also* the normalizing constant for *Q*:

$$Q(x) = \frac{f(x) \times P(x)}{\sum_{x'} f(x') \times P(x')}$$

$$P_{L_0}(w|u) = \frac{l(u,w) \times P(w)}{\sum_{w' \in \mathcal{W}} l(u,w') \times P(w')}$$

where l(u, w) = 1 or 0, depending on whether *u* is true at *w*

$$P_{L_0}(w|u) = \frac{l(u,w) \times P(w)}{\sum_{w' \in \mathcal{W}} l(u,w') \times P(w')}$$

where l(u, w) = 1 or 0, depending on whether *u* is true at *w*

Let us define the *literal information gain* of *u*:

 $G_{L_0}(u) = D_{\mathrm{KL}}(P_{L_0}(w|u) || P(w))$

$$P_{L_0}(w|u) = \frac{l(u,w) \times P(w)}{\sum_{w' \in \mathcal{W}} l(u,w') \times P(w')}$$

where l(u, w) = 1 or 0, depending on whether *u* is true at *w*

Let us define the *literal information gain* of *u*:

$$G_{L_0}(u) = D_{\mathrm{KL}}(P_{L_0}(w|u) || P(w))$$

Using our theorem:

$$G_{L_0}(u) = -\log \sum_{w' \in \mathcal{W}} l(u, w') \times P(w')$$

$$P_{L_0}(w|u) = \frac{l(u,w) \times P(w)}{\sum_{w' \in \mathcal{W}} l(u,w') \times P(w')}$$

where l(u, w) = 1 or 0, depending on whether *u* is true at *w*

Let us define the *literal information gain* of *u*:

$$G_{L_0}(u) = D_{\mathrm{KL}}(P_{L_0}(w|u) || P(w))$$

Using our theorem:

$$G_{L_0}(u) = -\log \sum_{w' \in \mathcal{W}} l(u, w') \times P(w')$$

$$P_{L_0}(w|u) = l(u, w) \times P(w) \times e^{G_{L_0}(u)}$$

Reformulating the pragmatic speaker

$$P_{S_1}(u \mid w) \propto \frac{P_{L_0}(w \mid u)^{\alpha}}{e^{\alpha \times C(u)}}$$

Reformulating the pragmatic speaker

$$P_{S_1}(u \mid w) \propto \frac{P_{L_0}(w \mid u)^{\alpha}}{e^{\alpha \times C(u)}}$$
$$\propto \frac{\left(l(u, w) \times P(w) \times e^{G_{L_0}(u)}\right)^{\alpha}}{e^{\alpha \times C(u)}}$$

$$P_{S_{1}}(u \mid w) \propto \frac{P_{L_{0}}(w \mid u)^{\alpha}}{e^{\alpha \times C(u)}}$$

$$\propto \frac{\left(l(u, w) \times P(w) \times e^{G_{L_{0}}(u)}\right)^{\alpha}}{e^{\alpha \times C(u)}}$$

$$\propto l(u, w)^{\alpha} \times P(w)^{\alpha} \times e^{\alpha \times (G_{L_{0}}(u) - C(u))}$$

$$P_{S_1}(u \mid w) \propto \frac{P_{L_0}(w \mid u)^{\alpha}}{e^{\alpha \times C(u)}}$$

$$\propto \frac{\left(l(u, w) \times P(w) \times e^{G_{L_0}(u)}\right)^{\alpha}}{e^{\alpha \times C(u)}}$$

$$\propto l(u, w)^{\alpha} \times P(w)^{\alpha} \times e^{\alpha \times (G_{L_0}(u) - C(u))}$$

$$\propto l(u, w) \times e^{\alpha \times (G_{L_0}(u) - C(u))}$$

$$P_{S_1}(u \mid w) \propto \frac{P_{L_0}(w \mid u)^{\alpha}}{e^{\alpha \times C(u)}}$$

$$\propto \frac{\left(l(u, w) \times P(w) \times e^{G_{L_0}(u)}\right)^{\alpha}}{e^{\alpha \times C(u)}}$$

$$\propto l(u, w)^{\alpha} \times P(w)^{\alpha} \times e^{\alpha \times (G_{L_0}(u) - C(u))}$$

$$\propto l(u, w) \times e^{\alpha \times (G_{L_0}(u) - C(u))}$$

$$P_{S_{1}}(u \mid w) \propto \frac{P_{L_{0}}(w \mid u)^{\alpha}}{e^{\alpha \times C(u)}}$$

$$\propto \frac{\left(l(u, w) \times P(w) \times e^{G_{L_{0}}(u)}\right)^{\alpha}}{e^{\alpha \times C(u)}}$$

$$\propto l(u, w)^{\alpha} \times P(w)^{\alpha} \times e^{\alpha \times (G_{L_{0}}(u) - C(u))}$$

$$\propto l(u, w) \times e^{\alpha \times (G_{L_{0}}(u) - C(u))}$$

Upshot:

$$P_{S_{1}}(u \mid w) \propto \frac{P_{L_{0}}(w \mid u)^{\alpha}}{e^{\alpha \times C(u)}}$$

$$\propto \frac{\left(l(u, w) \times P(w) \times e^{G_{L_{0}}(u)}\right)^{\alpha}}{e^{\alpha \times C(u)}}$$

$$\propto l(u, w)^{\alpha} \times P(w)^{\alpha} \times e^{\alpha \times (G_{L_{0}}(u) - C(u))}$$

$$\propto l(u, w) \times e^{\alpha \times (G_{L_{0}}(u) - C(u))}$$

Upshot:

• l(u, w) is our filter

$$P_{S_{1}}(u \mid w) \propto \frac{P_{L_{0}}(w \mid u)^{\alpha}}{e^{\alpha \times C(u)}}$$

$$\propto \frac{\left(l(u, w) \times P(w) \times e^{G_{L_{0}}(u)}\right)^{\alpha}}{e^{\alpha \times C(u)}}$$

$$\propto l(u, w)^{\alpha} \times P(w)^{\alpha} \times e^{\alpha \times (G_{L_{0}}(u) - C(u))}$$

$$\propto l(u, w) \times e^{\alpha \times (G_{L_{0}}(u) - C(u))}$$

Upshot:

- l(u, w) is our filter
- $P_{S_1}(u) \propto e^{\alpha \times (G_{L_0}(u) C(u))}$ is our *new* "prior"!

Reformulating the pragmatic speaker: example

 \llbracket 'JP ran $u \operatorname{km'} \rrbracket = w \ge u$

Reformulating the pragmatic speaker: example

 \llbracket 'JP ran $u \operatorname{km'} \rrbracket = w \ge u$

 $P_{S_1}(u) \propto e^{\alpha \times (G_{L_0}(u) - C(u))}$

Reformulating the pragmatic speaker: example

 \llbracket 'JP ran $u \text{ km'} \rrbracket = w \ge u$

$$P_{S_1}(u) \propto e^{\alpha \times (G_{L_0}(u) - C(u))}$$

Prior over JP's running distance

 $P_{S_1}(u|w=7)$ with $\alpha = 4$

Making the normalizing constant explicit

As a proportion:

 $P_{S_1}(u|w) \propto l(u,w) \times P_{S_1}(u)$

Making the normalizing constant explicit

As a proportion:

 $P_{S_1}(u|w) \propto l(u,w) \times P_{S_1}(u)$

Normalizing:

$$P_{S_1}(u|w) = \frac{l(u,w) \times P_{S_1}(u)}{\sum_{u' \in \mathcal{U}} l(u',w) \times P_{S_1}(u')}$$

As a proportion:

 $P_{S_1}(u|w) \propto l(u,w) \times P_{S_1}(u)$

Normalizing:

$$P_{S_{1}}(u|w) = \frac{l(u, w) \times P_{S_{1}}(u)}{\sum_{u' \in \mathcal{U}} l(u', w) \times P_{S_{1}}(u')}$$
$$= l(u, w) \times P_{S_{1}}(u) \times e^{G_{S_{1}}(w)}$$

As a proportion:

 $P_{S_1}(u|w) \propto l(u,w) \times P_{S_1}(u)$

Normalizing:

$$P_{S_{1}}(u|w) = \frac{l(u, w) \times P_{S_{1}}(u)}{\sum_{u' \in \mathcal{U}} l(u', w) \times P_{S_{1}}(u')}$$
$$= l(u, w) \times P_{S_{1}}(u) \times e^{G_{S_{1}}(w)}$$

As a proportion:

 $P_{S_1}(u|w) \propto l(u,w) \times P_{S_1}(u)$

Normalizing:

$$P_{S_{1}}(u|w) = \frac{l(u, w) \times P_{S_{1}}(u)}{\sum_{u' \in \mathcal{U}} l(u', w) \times P_{S_{1}}(u')}$$
$$= l(u, w) \times P_{S_{1}}(u) \times e^{G_{S_{1}}(w)}$$

$$G_{S_1}(w) = -\log \sum_{u \in \mathcal{U}} l(u, w) \times P_{S_1}(u)$$

the *specificity* of *w*

 $P_{L_1}(w|u) \propto P_{S_1}(u|w) \times P(w)$

 $P_{L_1}(w|u) \propto P_{S_1}(u|w) \times P(w)$ $\propto l(u, w) \times P_{S_1}(u) \times e^{G_{S_1}(w)} \times P(w)$

 $P_{L_1}(w|u) \propto P_{S_1}(u|w) \times P(w)$ $\propto l(u, w) \times P_{S_1}(u) \times e^{G_{S_1}(w)} \times P(w)$ $\propto l(u, w) \times e^{G_{S_1}(w)} \times P(w)$

 $P_{L_1}(w|u) \propto P_{S_1}(u|w) \times P(w)$ $\propto l(u, w) \times P_{S_1}(u) \times e^{G_{S_1}(w)} \times P(w)$ $\propto l(u, w) \times e^{G_{S_1}(w)} \times P(w)$

 $P_{L_1}(w|u) \propto P_{S_1}(u|w) \times P(w)$ $\propto l(u, w) \times P_{S_1}(u) \times e^{G_{S_1}(w)} \times P(w)$ $\propto l(u, w) \times e^{G_{S_1}(w)} \times P(w)$

Define $P_{L_1}(w) = e^{G_{S_1}(w)} \times P(w)$ as our *new* prior!

 $P_{L_1}(w|u) \propto P_{S_1}(u|w) \times P(w)$ $\propto l(u, w) \times P_{S_1}(u) \times e^{G_{S_1}(w)} \times P(w)$ $\propto l(u, w) \times e^{G_{S_1}(w)} \times P(w)$

Define $P_{L_1}(w) = e^{G_{S_1}(w)} \times P(w)$ as our *new* prior! Upshot:

$$P_{L_1}(w|u) \propto l(u,w) \times P_{L_1}(w)$$

Reformulating the pragmatic listener: example

Some consequences

Computing RSA models

Main result:

 $P_{L_1}(w|u) \propto l(u,w) \times P_{L_1}(w)$

Computing RSA models

Main result:

$$P_{L_1}(w|u) \propto l(u, w) \times P_{L_1}(w)$$

The "pragmatic" interpretation of 'JP ran 2.4 km' is gotten by simply cropping $P_{L_1}(w)$ and normalizing:

Computing RSA models

Main result:

$$P_{L_1}(w|u) \propto l(u,w) \times P_{L_1}(w)$$

The "pragmatic" interpretation of 'JP ran 2.4 km' is gotten by simply cropping $P_{L_1}(w)$ and normalizing:

(Side note: the expected implicature is generated for large α only!) 14

• For literal interpretations, this prior is P(w).

- For literal interpretations, this prior is P(w).
- For pragmatic interpretations, this prior is $P_{L_1}(w)$.

- For literal interpretations, this prior is P(w).
- For pragmatic interpretations, this prior is $P_{L_1}(w)$.

- For literal interpretations, this prior is P(w).
- For pragmatic interpretations, this prior is $P_{L_1}(w)$.

(RSA-style) pragmatic interpretations can be *learned*, just as probability distributions over events can; pragmatic distributions are additionally sensitive to an event's specificity.

References

Frank, Michael C., and Noah D. Goodman. 2012. Predicting pragmatic reasoning in language games. *Science* 336:998 – 998.
Goodman, Noah D., and Michael C. Frank. 2016. Pragmatic Language Interpretation as Probabilistic Inference. *Trends in Cognitive Sciences* 20:818–829. https://www.sciencedirect.com/science/article/pii/S136466131630122X.

Marr, David. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Cambridge: MIT Press.