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Introduction to RSA



RSA (Frank and Goodman, 2012; Goodman and Frank, 2016)

u = ‘JP ate five cookies.’

JuK = ncookies ≥ 5

Three components:

• A literal listener L0:
u ↦→ PL0 (w |u)

• A pragmatic speaker S1:
w ↦→ PS1 (u|w)

• A pragmatic listener L1:
u ↦→ PL1 (w |u)
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The literal listener L0

PL0 (w |u) ∝ 1(w ≥ n) × P (w)

w 5 6 7

‘JP ate 5 cookies’ 1/3 1/3 1/3
‘JP ate 6 cookies’ 0 1/2 1/2
‘JP ate 7 cookies’ 0 0 1
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The pragmatic speaker S1

PS1 (u | w) ∝
PL0 (w | u)𝛼

e𝛼×C (u)

(Assume 𝛼 = 4, and that C(u) is constant.)

w 5 6 7

‘JP ate 5 cookies’ 1 0.16 0.01
‘JP ate 6 cookies’ 0 0.84 0.06
‘JP ate 7 cookies’ 0 0 0.93
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The pragmatic listener L1

PL1 (w |u) ∝ PS1 (u|w) × P (w)

w 5 6 7

‘JP ate 5 cookies’ 0.85 0.14 0.01
‘JP ate 6 cookies’ 0 0.93 0.07
‘JP ate 7 cookies’ 0 0 1
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Plan

• Reformulate the components of RSA as filters on reconceived
prior distributions (using information gain).

• Discuss some consequences:

• for computing RSA models;
• for the algorithmic plausibility of RSA (Marr, 1982).
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RSA via information gain



Information gain as K-L divergence

Kullback-Leibler (K-L) divergence (between distributions P and Q
over X):

DKL(Q ∥ P) = −
∑︁
x∈X

Q (x) log
(
P (x)
Q (x)

)

Higher values: more information is gained by going from P to Q.
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A theorem

Theorem
If Q (x) ∝ f (x) × P (x), and the range of f is {0, 1}, then:

DKL(Q ∥ P) = − log

(∑︁
x

f (x) × P (x)
)

In words: if f updates P merely by filtering it (resulting in Q), then
the information gain of Q is the negative log of the expected value
of f .

• Important: the expected value of f is also the normalizing
constant for Q:

Q (x) = f (x) × P (x)∑
x ′ f (x ′) × P (x ′)
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Reformulating the literal listener

PL0 (w |u) = l(u,w) × P (w)∑
w′∈W l(u,w ′) × P (w ′)

where l(u,w) = 1 or 0, depending on whether u is true at w

Let us define the literal information gain of u:

GL0 (u) = DKL(PL0 (w |u) ∥ P (w))

Using our theorem:

GL0 (u) = − log
∑︁

w′∈W
l(u,w ′) × P (w ′)

PL0 (w |u) = l(u,w) × P (w) × eGL0 (u)

8
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Reformulating the pragmatic speaker

The pragmatic speaker S1:

PS1 (u | w) ∝
PL0 (w | u)𝛼

e𝛼×C (u)

∝

(
l(u,w) × P (w) × eGL0 (u)

)𝛼
e𝛼×C (u)

∝ l(u,w)𝛼 × P (w)𝛼 × e𝛼×(GL0 (u)−C (u) )

∝ l(u,w) × e𝛼×(GL0 (u)−C (u) )

Upshot:

• l(u,w) is our filter
• PS1 (u) ∝ e𝛼×(GL0 (u)−C (u) ) is our new “prior”!
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Reformulating the pragmatic speaker: example

J‘JP ran u km’K = w ≥ u

PS1 (u) ∝ e𝛼×(GL0 (u)−C (u) )

w
0

0.05
0.1
0.15
0.2
0.25
0.3
0.35

0 1 2 3 4 5 6 7 8

Prior over JP’s running distance

u
0

5x106
1x107

1.5x107
2x107

2.5x107
3x107

0 1 2 3 4 5 6 7

PS1 (u|w = 7) with 𝛼 = 4
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Making the normalizing constant explicit

As a proportion:

PS1 (u|w) ∝ l(u,w) × PS1 (u)

Normalizing:

PS1 (u|w) =
l(u,w) × PS1 (u)∑

u′∈U l(u′,w) × PS1 (u′)

= l(u,w) × PS1 (u) × eGS1 (w )

GS1 (w) = − log
∑︁
u∈U

l(u,w) × PS1 (u)

the specificity of w
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Reformulating the pragmatic listener

The pragmatic listener L1:

PL1 (w |u) ∝ PS1 (u|w) × P (w)

∝ l(u,w) × PS1 (u) × eGS1 (w ) × P (w)

∝ l(u,w) × eGS1 (w ) × P (w)

Define PL1 (w) = eGS1 (w ) × P (w) as our new prior!

Upshot:
PL1 (w |u) ∝ l(u,w) × PL1 (w)
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Reformulating the pragmatic listener: example

w

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8

P (w)

(JP’s distance prior)

w

0

2

4

6

8

10

1 2 3 4 5 6 7

× eGS1 (w )

(specificity)

w

literalpragmatic 𝛼=1pragmatic 𝛼=4pragmatic 𝛼=20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7

= PL1 (w)

(L1 “pragmatic” prior)
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Some consequences



Computing RSA models

Main result:
PL1 (w |u) ∝ l(u,w) × PL1 (w)

The “pragmatic” interpretation of ‘JP ran 2.4 km’ is gotten by simply
cropping PL1 (w) and normalizing:

w

literalpragmatic 𝛼=1pragmatic 𝛼=4pragmatic 𝛼=20

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

(Side note: the expected implicature is generated for large 𝛼 only!)
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Algorithmic plausibility

From an algorithmic perspective (Marr, 1982), pragmatic
interpretations (as according to RSA models) can be obtained the
same way as literal interpretations: by filtering a certain prior by
the literal meaning of the utterance.

• For literal interpretations, this prior is P (w).
• For pragmatic interpretations, this prior is PL1 (w).

(RSA-style) pragmatic interpretations can be learned, just as
probability distributions over events can; pragmatic distributions
are additionally sensitive to an event’s specificity.
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