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Motivation



Big question

How should we use inference datasets to test semantic theories?

A couple of sub-questions:

• How do we get at “true” inference judgments?

• Judgment data tends to be influenced by non-semantic factors,

e.g., participant response strategies, participant accuracy.

• Different question: how do we interpret inference data?

• Do we compare mean responses among conditions? If so, what

do such means represent?

• Should we somehow take into account the whole response

distribution?

We need linking assumptions. . .
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This talk

We will do a few things:

• We will look at particular empirical domain: factive inferences.

• We will develop a compositional probabilistic semantics that

allows us to formulate Bayesian models of inference data

(following Grove and Bernardy (2023)).

• We will use this semantics to combine theories of factivity with

linking assumptions seamlessly.
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Factivity and gradience



Factivity

(1) Jo loves that Mo Left.

{ Mo left.

This inference patterns like a presupposition, using

family-of-sentence tests (Chierchia and McConnell-Ginet 1990):

(2) a. Jo doesn’t love that Mo Left.

b. Does Jo love that Mo left?

c. If Jo loves that Mo Left, she’ll also love that Bo left.

{ Mo left.
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Gradience

What sorts of inference patterns arise from uses of factive

predicates in an experimental setting?

• E.g., if you ask someone to rate the likelihood that Mo left,

given that Jo loves that Mo left is true.
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White and Rawlins (2018)

‘Someone {discovered, didn’t discover} that a particular thing

happened.’

‘Did that thing happen?’

(yes, maybe or maybe not, no)
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White and Rawlins (2018)
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Degen and Tonhauser (2022)
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Degen and Tonhauser (2022)
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Why is there gradience?

One possibility:

• Different predicates boost the certainty associated with an

inference to different degrees (Tonhauser, Beaver, and Degen

2018).

• For example, discover makes its complement clause more likely

to be true. (But not as much more likely as, say, know.)

Another possibility:

• Predicates are generally ambiguous between being factive or

non-factive. But different predicates are factive with different

frequencies, and it is these frequencies which differ among one

another in a gradient fashion.

• It is just that discover’s average factivity is less than know’s.
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Hypotheses

Two hypotheses about the source of gradience among by-predicate

means:

• The Fundamental Discreteness Hypothesis
Factivity is a discrete semantic property of at least some token

occurrences clause-embedding predicates. (A given occurrence

of a particular predicate either triggers a projective inference,

or it does not trigger a projective inference.)

• The Fundamental Gradience Hypothesis
The gradient distinctions among predicates reflect the different

gradient contributions specific predicates make to inferences

about the truth of their complement clauses.

11



Hypotheses

Two hypotheses about the source of gradience among by-predicate

means:

• The Fundamental Discreteness Hypothesis
Factivity is a discrete semantic property of at least some token

occurrences clause-embedding predicates. (A given occurrence

of a particular predicate either triggers a projective inference,

or it does not trigger a projective inference.)

• The Fundamental Gradience Hypothesis
The gradient distinctions among predicates reflect the different

gradient contributions specific predicates make to inferences

about the truth of their complement clauses.

11



Hypotheses

Two hypotheses about the source of gradience among by-predicate

means:

• The Fundamental Discreteness Hypothesis
Factivity is a discrete semantic property of at least some token

occurrences clause-embedding predicates. (A given occurrence

of a particular predicate either triggers a projective inference,

or it does not trigger a projective inference.)

• The Fundamental Gradience Hypothesis
The gradient distinctions among predicates reflect the different

gradient contributions specific predicates make to inferences

about the truth of their complement clauses.

11



Hypotheses

The fundamental discreteness hypothesis represents the classical

view (Kiparsky and Kiparsky 1970; Karttunen 1971, i.a.).

The fundamental gradience hypothesis represents a more recent

view, i.e., that presupposition triggers can trigger inferences

gradiently (Tonhauser, Beaver, and Degen 2018).
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How to proceed

To investigate and compare these two hypotheses, we will do two

things:

• Provide a modular probabilistic semantics that allows the two

hypotheses to be stated precisely.

• I.e., give a characterization of Bayesian models that encode the

two hypotheses, and formulate explicit linking assumptions

using the very same semantic repertoire.

• Fit these models to inference data and compare the fits.
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A modular probabilistic semantics



Grove and Bernardy (2023)

Following Grove and Bernardy (2023), we provide an interface for

stating a probabilistic semantics using monads.

This just means we have the following ingredients:

• A type constructor P that takes any type 𝛼 onto the type P𝛼 of

probabilistic programs that return 𝛼 ’s.

• An operator ‘bind’

(∼) : P𝛼 → (𝛼 → P𝛽) → P𝛽

allowing us to bind a probabilistic program of type P𝛼 to a

value of type 𝛼 used inside another probabilistic program.

(Basically allows us to write sampling statements: x ∼ m.)

• An operator ‘return’

(·) : 𝛼 → P𝛼
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tall as an example

In a non-probabilistic semantics, since tall is an adjective, you might

give it a meaning of type e → t :

𝜆x .height(x) ≥ d

But where does the threshold d come from?

15
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tall as an example

Solution: the meaning of tall is represented by a probability

distribution.

• A probabilistic program of type P(e → t):

d ∼ thresholdPrior

𝜆x .height(x) ≥ d

• Returns the property true of an individual if their height

exceeds the threshold d .

• But now d takes on the probability distribution represented by

thresholdPrior.

• So the meaning of tall represents a probability distribution over

properties, each one fixed by some threshold d .
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Two levels of probabilistic involvement

The plan is now to make the following move:

• Model linguistic meanings as programs, not of type P𝛼 , but of
type P(P𝛼).

• The “inner” P — P(P𝛼) — represents uncertainty that arises on

individual occasions of use and interpretation, even after the

meanings of expressions have been fixed.

• The “outer” P — P(P𝛼) — represents metalinguistic uncertainty;
that is, uncertainty about what interpretation to apply in the

first place.

17



Two levels of probabilistic involvement

The plan is now to make the following move:

• Model linguistic meanings as programs, not of type P𝛼 , but of
type P(P𝛼).

• The “inner” P — P(P𝛼) — represents uncertainty that arises on

individual occasions of use and interpretation, even after the

meanings of expressions have been fixed.

• The “outer” P — P(P𝛼) — represents metalinguistic uncertainty;
that is, uncertainty about what interpretation to apply in the

first place.

17



Two levels of probabilistic involvement

The plan is now to make the following move:

• Model linguistic meanings as programs, not of type P𝛼 , but of
type P(P𝛼).

• The “inner” P — P(P𝛼) — represents uncertainty that arises on

individual occasions of use and interpretation, even after the

meanings of expressions have been fixed.

• The “outer” P — P(P𝛼) — represents metalinguistic uncertainty;
that is, uncertainty about what interpretation to apply in the

first place.

17



Two levels of probabilistic involvement

The plan is now to make the following move:

• Model linguistic meanings as programs, not of type P𝛼 , but of
type P(P𝛼).

• The “inner” P — P(P𝛼) — represents uncertainty that arises on

individual occasions of use and interpretation, even after the

meanings of expressions have been fixed.

• The “outer” P — P(P𝛼) — represents metalinguistic uncertainty;
that is, uncertainty about what interpretation to apply in the

first place.

17



Two levels of probabilistic involvement: example

Say you’re in a noisy bar. Someone says Jo is -all. . .

JJo is -allK : P(Pt)
JJo is -allK = 𝜏 ∼ Bernoulli(0.7)

d ∼ heightThreshold

height(j) ≥ d

𝜏

d ∼ sizeThreshold

size(j) ≤ d

¬𝜏

• 70% chance the utterances was Jo is tall, 30% chance it was Jo is
small.

• Having fixed one adjective or the other, there is uncertainty

that arises from the relevant degree threshold.
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Models of factivity



Inference data: Degen and Tonhauser (2021)

Degen and Tonhauser (2021) investigate the projection behavior of

twenty clause-embedding predicates, systematically varying the

contexts in which the predicates are used.

• For any given complement clause, a background fact is

provided which is intended to make the clause either likely or

unlikely to be true. . .
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Inference data: Degen and Tonhauser (2021)

They additionally conduct a separate norming study intended to

assess the prior certainties associated with such complement

clauses, paired with their background facts.
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Inference data: Degen and Tonhauser (2021)
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Factivity and world knowledge

Our models of Degen et al.’s data vary whether two different

sources of uncertainty are metalinguistic in nature versus

uncertainty that is tied to particular interpretations:

• Uncertainty about factivity

• Uncertainty about world knowledge (i.e., the prior probability

of the complement clause being true)

The fundamental discreteness hypothesis says that uncertainty

about factivity is metalinguistic.

The fundamental gradience hypothesis says that it is tied to

particular interpretations.

This gives us four models. . .
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The discrete-factivity model

discrete-factivity : P(P𝜅)
discrete-factivity = ⟨v,w⟩ ∼ priors

𝜏v ∼ Bernoulli(v)
𝜏w ∼ Bernoulli(w)
𝜏v ∨ 𝜏w

Important: The Bernoulli variable 𝜏v associated determining

whether or not a predicate is factive is sampled at the “outer” P.

24



The wholly-gradient model

wholly-gradient : P(P𝜅)
wholly-gradient = ⟨v,w⟩ ∼ priors

𝜏v ∼ Bernoulli(v)
𝜏w ∼ Bernoulli(w)
𝜏v ∨ 𝜏w

Important: The Bernoulli variable 𝜏v associated determining

whether or not a predicate is factive is sampled at the “inner” P.
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The discrete-world model

discrete-world : P(P𝜅)
discrete-world = ⟨v,w⟩ ∼ priors

𝜏w ∼ Bernoulli(w)
𝜏v ∼ Bernoulli(v)
𝜏v ∨ 𝜏w
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The wholly-discrete model

wholly-discrete : P(P𝜅)
wholly-discrete = ⟨v,w⟩ ∼ priors

𝜏v ∼ Bernoulli(v)
𝜏w ∼ Bernoulli(w)
𝜏v ∨ 𝜏w

27



Comparisons

We compare the four models in terms of their expected log

pointwise predictive densities (ELPDs) computed under the widely

applicable information criterion (Gelman, Hwang, and Vehtari 2014;

Watanabe 2013).
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Why these differences?

Posterior predictive distributions, collapsing across all complement

clauses and background facts:

know see think

be annoyed confirm discover
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A few follow-ups

Granted, this investigation is post hoc. To draw firmer conclusions,

we should test these models against newly collected data.

We do this in two ways:

• Replicate Degen et al.’s experiment and use the posterior

parameter distributions from our first set of models as priors in

a new set of models.

• Modify the methodology slightly, so that complement clauses

have minimal lexical content.

• Helps get rid of the effect of world knowledge.
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Our replication

Given data from 288 new participants:
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First modification: the bleached task
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Bleached comparisons

Given data from 47 participants:

−

− −

−

240

270

300

330

discrete−factivity wholly−gradient discrete−world wholly−discrete

E
LP

D

33



Second modification: the templatic task
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Templatic comparisons

Given data 49 participants:
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Summing up



Conclusions

We find pretty firm evidence in support of the fundamental

discreteness hypothesis.

• Classical semantic accounts of the behavior of factive

predicates (Kiparsky and Kiparsky 1970; Karttunen 1971, i.a.)

can remain intact.

Broader point:

• We can connect semantic theory to experimental data using

the traditional semantic toolkit (i.e., typed 𝜆-calculus).

• But we have to integrate semantic analyses into theories of

inference carefully. . . here, we choose to integrate them in a

modular fashion, using monads.

• The strategy of using an already-available formal apparatus

allows linking assumptions to be made explicit and testable.
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