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Motivation



Probabilistic semantics

In the last decade, lots of eort to connect formal semantics to
mathematically explicit models of pragmatic reasoning. . .

• Rational Speech Act (RSA) models to formalize Gricean
pragmatics (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and
Goodman, 2017)

. . . generally, by dropping typed _-calculus and encoding meanings
in terms of probabilistic programming languages.

• Church (Goodman et al., 2008)

Such programming languages are oen impure: they allow for
probabilistic eects, like sampling and marginalization, to occur at
any point in a program.
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Today’s talk

Goal: show how a probabilistic semantics for natural language can
be presented using only the simply typed _-calculus (with products).

• Achieve a seamless integration with approaches to meaning
based on higher-order logic.

End up with a characterization of meanings as probabilistic
programs, which are, nevertheless, pure (i.e., no real probabilistic
eects).

Such programs describe probability distributions over logical
meanings.
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Schematically. . .

Jsomeone is tallK = ∃x : human(x) ∧ height(x) ≥ \tall

tallest human

PD(\tall)

\tall

P (= True)
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Our system

Natural language _-calculus

Probabilistic
programs

Degree of
belief

J·K

L·M^∼Distr

Expected
value
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Up next

Natural language _-calculus

Probabilistic
programs

Degree of
belief

J·K

L·M^∼Distr

Expected
value
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Formal semantics



Logics and sets

Two strategies to formally interpret natural language, inherited
from Montague:

• direct: right into set theory

• denotations (entities, functions, etc.) are elements of sets

• indirect: into a formal logic, e.g., the simply-typed
_-calculus/higher-order logic
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Indirect interpretation

(1) Someone is tall.

JsomeoneK = _k .∃x : human(x) ∧ k (x)
JisK = _x .x

JtallK = _x .height(x) ≥ \tall

Functional application and 𝛽-reduction:

• JsomeoneK(JisK(JtallK)) →𝛽 ∃x : human(x)∧height(x) ≥ \tall
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The probabilistic interpretation



Contexts

Let us assume that the non-logical constants of the logical language
are finite in number and are ordered.

• (1) height : e → dtall (2) human : e → t
(3) (≥) : r → r → t (4) \tall : dtall

• A context (^) is a tuple of type 𝛼1 × ... × 𝛼n, where 𝛼i is the type
of the ith constant.

• A context for this language would be of type
(e → dtall) × (e → t) × (r → r → t) × dtall .
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A _-homomorphism in a context

Given some context ^:

LciM^ = ^i (ci is the ith constant)

LxM^ = x (variables)

L_x .MM^ = _x .LMM^ (abstractions)

LMNM^ = LMM^LNM^ (applications)

L〈M,N〉M^ = 〈LMM^, LNM^〉 (pairing)

LMiM^ = LMM^i (projection)

Etc. (�, logical constants)
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Composing L·M^ with J·K

If we compose the logical interpretation with the _-homomorphism
in some context ^:

• LJsomeone is tallKM^ = ∃x : ^2(x) ∧ ^3(^1(x)) (^4)
• A truth value.

For example, say ^ = 〈height, human, (≥), d〉:

• LJsomeone is tallKM^ = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.
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Probabilistic programs



Definition

For any type 𝛼 , a function of type (𝛼 → r) → r returns values of
type 𝛼 .

• Consumes a projection function: some f of type 𝛼 → r .

• Results in an r , by summing/integrating f over the possible
values x of type 𝛼 , weighting each f (x) by the probability of x .

• E.g., N(`, 𝜎) : (dtall → r) → r

• Represents a normal distribution with mean ` and standard
deviation 𝜎 .

• N(`, 𝜎) (f ) =
∫ ∞
−∞ PDFN(`,𝜎) (x) ∗ f (x)dx
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Some nice things about probabilistic programs (pt. 1)

You can turn any value (of any type 𝛼) into a trivial probabilistic
program that returns just that value:

[ : 𝛼 → (𝛼 → r) → r (‘return’)

[ (a) = _f .f (a)

E.g., [ (jp) = _f .f (jp):

• The probabilistic program that returns Jean-Philippe with a
probability of 1.
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Some nice things about probabilistic programs (pt. 2)

You can pass the value returned by a probabilistic program m to a
function k from values to probabilistic programs, in order to make a
bigger, sequenced probabilistic program.

(★) : ((𝛼 → r) → r) → (‘bind’)

(𝛼 → (𝛽 → r) → r) →
(𝛽 → r) → r

m★ k = _f .m(_x .k (x) (f ))

“Run m, computing x . Then feed x to k."

14
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Building probabilistic programs

We may now build probabilistic programs that return contexts.

• If a context is of type 𝛼1 × ... × 𝛼n, then we seek a probabilistic
program K of type (𝛼1 × ... × 𝛼n → r) → r .

• Then, for a sentence 𝜙 in the logical language, we may do:

K ★ _^.[ (L𝜙M^) : (t → r) → r

15
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Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(_b.1)

• 1 : t → r is an indicator function:

• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• _b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.
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An example

(1) Someone is tall.

Say our constants are:

1. height : e → dtall

2. human : e → t

3. (≥) : r → r → t

4. \tall : dtall

Define K as:

K = N(72, 3) ★ _d .[ (height, human, (≥), d)
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An example (cont’d)

K ★ _^.[ (L∃x : human(x) ∧ height(x) ≥ \tallM^)

...

= _f .N(72, 3) (_d .f (∃x : human(x) ∧ height (x) ≥ d))

= _f .
∫ ∞

−∞
PDFN(72,3) (y) ∗ f (∃x : human(x) ∧ height (x) ≥ y)dy
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An example (cont’d) (cont’d)

Computing a probability:

∫ ∞
−∞ PDFN(72,3) (y) ∗ 1(∃x : human(x) ∧ height (x) ≥ y)dy∫ ∞

−∞ PDFN(72,3) (y)dy

=

∫ ∞

−∞
PDFN(72,3) (y) ∗ 1(∃x : human(x) ∧ height (x) ≥ y)dy

. . . the mass of N(72, 3) less than or equal to the height of the tallest
human
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Bayesian inference (e.g., RSA)



RSA

RSA models: a popular application of probabilistic semantics.

The basic idea:

• The RSA framework models a pragmatic listener, L1. . .

• . . .who infers a distribution over meanings m from an uerance
u, based on the probability that a pragmatic speaker, S1, would
make the uerance u to convey m.

• Given a meaning m, the probability that S1 would make the
uerance u to convey m is related to the probability that a
literal listener, L0, would infer m, given a literal interpretation
of u.
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Factoring by a weight / observing a premise

factor : r → (� → r) → r

factor (x) (f ) = x ∗ f (�)

observe : t → (� → r) → r)
observe(𝜙) (f ) = factor (1(𝜙)) (f )

= 1(𝜙) ∗ f (�)
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RSA: implementation

Say the type of the context is ^ = 𝛼1 × ... × 𝛼n. . .

L0 : u → (^ → r) → r

L0(u) = K ★ _^.observe(LuM^) ★ _�.[ (^)

S1 : ^ → (u → r) → r

S1(^) = U ★ _u.factor (PDFL0 (u) (^)𝛼 ) ★ _�.[ (u)

L1 : u → (^ → r) → r

L1(u) = K ★ _^.factor (PDFS1 (^) (u)) ★ _�.[ (^)
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Conclusion



Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed _-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• RSA models (also, semantic learning)

. . . using the same logical language one uses to characterize
linguistic meanings.
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