
Probabilistic compositional semantics, purely

Julian Grove and Jean-Philippe Bernardy

LENLS18, November 14, 2021

CLASP, University of Gothenburg

Motivation

Probabilistic semantics

In the last decade, lots of eort to connect formal semantics to
mathematically explicit models of pragmatic reasoning. . .

• Rational Speech Act (RSA) models to formalize Gricean
pragmatics (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and
Goodman, 2017)

. . . generally, by dropping typed _-calculus and encoding meanings
in terms of probabilistic programming languages.

• Church (Goodman et al., 2008)

Such programming languages are oen impure: they allow for
probabilistic eects, like sampling and marginalization, to occur at
any point in a program.

1

Probabilistic semantics

In the last decade, lots of eort to connect formal semantics to
mathematically explicit models of pragmatic reasoning. . .

• Rational Speech Act (RSA) models to formalize Gricean
pragmatics (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and
Goodman, 2017)

. . . generally, by dropping typed _-calculus and encoding meanings
in terms of probabilistic programming languages.

• Church (Goodman et al., 2008)

Such programming languages are oen impure: they allow for
probabilistic eects, like sampling and marginalization, to occur at
any point in a program.

1

Probabilistic semantics

In the last decade, lots of eort to connect formal semantics to
mathematically explicit models of pragmatic reasoning. . .

• Rational Speech Act (RSA) models to formalize Gricean
pragmatics (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and
Goodman, 2017)

. . . generally, by dropping typed _-calculus and encoding meanings
in terms of probabilistic programming languages.

• Church (Goodman et al., 2008)

Such programming languages are oen impure: they allow for
probabilistic eects, like sampling and marginalization, to occur at
any point in a program.

1

Probabilistic semantics

In the last decade, lots of eort to connect formal semantics to
mathematically explicit models of pragmatic reasoning. . .

• Rational Speech Act (RSA) models to formalize Gricean
pragmatics (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and
Goodman, 2017)

. . . generally, by dropping typed _-calculus and encoding meanings
in terms of probabilistic programming languages.

• Church (Goodman et al., 2008)

Such programming languages are oen impure: they allow for
probabilistic eects, like sampling and marginalization, to occur at
any point in a program.

1

Probabilistic semantics

In the last decade, lots of eort to connect formal semantics to
mathematically explicit models of pragmatic reasoning. . .

• Rational Speech Act (RSA) models to formalize Gricean
pragmatics (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and
Goodman, 2017)

. . . generally, by dropping typed _-calculus and encoding meanings
in terms of probabilistic programming languages.

• Church (Goodman et al., 2008)

Such programming languages are oen impure: they allow for
probabilistic eects, like sampling and marginalization, to occur at
any point in a program.

1

Probabilistic semantics

In the last decade, lots of eort to connect formal semantics to
mathematically explicit models of pragmatic reasoning. . .

• Rational Speech Act (RSA) models to formalize Gricean
pragmatics (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and
Goodman, 2017)

. . . generally, by dropping typed _-calculus and encoding meanings
in terms of probabilistic programming languages.

• Church (Goodman et al., 2008)

Such programming languages are oen impure: they allow for
probabilistic eects, like sampling and marginalization, to occur at
any point in a program.

1

Probabilistic semantics

In the last decade, lots of eort to connect formal semantics to
mathematically explicit models of pragmatic reasoning. . .

• Rational Speech Act (RSA) models to formalize Gricean
pragmatics (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and
Goodman, 2017)

. . . generally, by dropping typed _-calculus and encoding meanings
in terms of probabilistic programming languages.

• Church (Goodman et al., 2008)

Such programming languages are oen impure: they allow for
probabilistic eects, like sampling and marginalization, to occur at
any point in a program.

1

Today’s talk

Goal: show how a probabilistic semantics for natural language can
be presented using only the simply typed _-calculus (with products).

• Achieve a seamless integration with approaches to meaning
based on higher-order logic.

End up with a characterization of meanings as probabilistic
programs, which are, nevertheless, pure (i.e., no real probabilistic
eects).

Such programs describe probability distributions over logical
meanings.

2

Today’s talk

Goal: show how a probabilistic semantics for natural language can
be presented using only the simply typed _-calculus (with products).

• Achieve a seamless integration with approaches to meaning
based on higher-order logic.

End up with a characterization of meanings as probabilistic
programs, which are, nevertheless, pure (i.e., no real probabilistic
eects).

Such programs describe probability distributions over logical
meanings.

2

Today’s talk

Goal: show how a probabilistic semantics for natural language can
be presented using only the simply typed _-calculus (with products).

• Achieve a seamless integration with approaches to meaning
based on higher-order logic.

End up with a characterization of meanings as probabilistic
programs, which are, nevertheless, pure (i.e., no real probabilistic
eects).

Such programs describe probability distributions over logical
meanings.

2

Today’s talk

Goal: show how a probabilistic semantics for natural language can
be presented using only the simply typed _-calculus (with products).

• Achieve a seamless integration with approaches to meaning
based on higher-order logic.

End up with a characterization of meanings as probabilistic
programs, which are, nevertheless, pure (i.e., no real probabilistic
eects).

Such programs describe probability distributions over logical
meanings.

2

Today’s talk

Goal: show how a probabilistic semantics for natural language can
be presented using only the simply typed _-calculus (with products).

• Achieve a seamless integration with approaches to meaning
based on higher-order logic.

End up with a characterization of meanings as probabilistic
programs, which are, nevertheless, pure (i.e., no real probabilistic
eects).

Such programs describe probability distributions over logical
meanings.

2

Schematically. . .

Jsomeone is tallK = ∃x : human(x) ∧ height(x) ≥ \tall

tallest human

PD(\tall)

\tall

P (= True)

3

Schematically. . .

Jsomeone is tallK = ∃x : human(x) ∧ height(x) ≥ \tall

tallest human

PD(\tall)

\tall

P (= True)

3

Our system

Natural language _-calculus

Probabilistic
programs

Degree of
belief

J·K

L·M^∼Distr

Expected
value

4

Up next

Natural language _-calculus

Probabilistic
programs

Degree of
belief

J·K

L·M^∼Distr

Expected
value

5

Formal semantics

Logics and sets

Two strategies to formally interpret natural language, inherited
from Montague:

• direct: right into set theory

• denotations (entities, functions, etc.) are elements of sets

• indirect: into a formal logic, e.g., the simply-typed
_-calculus/higher-order logic

6

Logics and sets

Two strategies to formally interpret natural language, inherited
from Montague:

• direct: right into set theory

• denotations (entities, functions, etc.) are elements of sets

• indirect: into a formal logic, e.g., the simply-typed
_-calculus/higher-order logic

6

Logics and sets

Two strategies to formally interpret natural language, inherited
from Montague:

• direct: right into set theory
• denotations (entities, functions, etc.) are elements of sets

• indirect: into a formal logic, e.g., the simply-typed
_-calculus/higher-order logic

6

Logics and sets

Two strategies to formally interpret natural language, inherited
from Montague:

• direct: right into set theory
• denotations (entities, functions, etc.) are elements of sets

• indirect: into a formal logic, e.g., the simply-typed
_-calculus/higher-order logic

6

Indirect interpretation

(1) Someone is tall.

JsomeoneK = _k .∃x : human(x) ∧ k (x)
JisK = _x .x

JtallK = _x .height(x) ≥ \tall

Functional application and 𝛽-reduction:

• JsomeoneK(JisK(JtallK)) →𝛽 ∃x : human(x)∧height(x) ≥ \tall

7

Indirect interpretation

(1) Someone is tall.

JsomeoneK = _k .∃x : human(x) ∧ k (x)

JisK = _x .x

JtallK = _x .height(x) ≥ \tall

Functional application and 𝛽-reduction:

• JsomeoneK(JisK(JtallK)) →𝛽 ∃x : human(x)∧height(x) ≥ \tall

7

Indirect interpretation

(1) Someone is tall.

JsomeoneK = _k .∃x : human(x) ∧ k (x)
JisK = _x .x

JtallK = _x .height(x) ≥ \tall

Functional application and 𝛽-reduction:

• JsomeoneK(JisK(JtallK)) →𝛽 ∃x : human(x)∧height(x) ≥ \tall

7

Indirect interpretation

(1) Someone is tall.

JsomeoneK = _k .∃x : human(x) ∧ k (x)
JisK = _x .x

JtallK = _x .height(x) ≥ \tall

Functional application and 𝛽-reduction:

• JsomeoneK(JisK(JtallK)) →𝛽 ∃x : human(x)∧height(x) ≥ \tall

7

Indirect interpretation

(1) Someone is tall.

JsomeoneK = _k .∃x : human(x) ∧ k (x)
JisK = _x .x

JtallK = _x .height(x) ≥ \tall

Functional application and 𝛽-reduction:

• JsomeoneK(JisK(JtallK)) →𝛽 ∃x : human(x)∧height(x) ≥ \tall

7

Indirect interpretation

(1) Someone is tall.

JsomeoneK = _k .∃x : human(x) ∧ k (x)
JisK = _x .x

JtallK = _x .height(x) ≥ \tall

Functional application and 𝛽-reduction:

• JsomeoneK(JisK(JtallK)) →𝛽 ∃x : human(x)∧height(x) ≥ \tall

7

Indirect interpretation

(1) Someone is tall.

JsomeoneK = _k .∃x : human(x) ∧ k (x)
JisK = _x .x

JtallK = _x .height(x) ≥ \tall

Functional application and 𝛽-reduction:

• JsomeoneK(JisK(JtallK)) →𝛽 ∃x : human(x)∧height(x) ≥ \tall

7

Up next

Natural language _-calculus

Probabilistic
programs

Degree of
belief

J·K

L·M^∼Distr

Expected
value

8

The probabilistic interpretation

Contexts

Let us assume that the non-logical constants of the logical language
are finite in number and are ordered.

• (1) height : e → dtall (2) human : e → t
(3) (≥) : r → r → t (4) \tall : dtall

• A context (^) is a tuple of type 𝛼1 × ... × 𝛼n, where 𝛼i is the type
of the ith constant.

• A context for this language would be of type
(e → dtall) × (e → t) × (r → r → t) × dtall .

9

Contexts

Let us assume that the non-logical constants of the logical language
are finite in number and are ordered.

• (1) height : e → dtall (2) human : e → t
(3) (≥) : r → r → t (4) \tall : dtall

• A context (^) is a tuple of type 𝛼1 × ... × 𝛼n, where 𝛼i is the type
of the ith constant.

• A context for this language would be of type
(e → dtall) × (e → t) × (r → r → t) × dtall .

9

Contexts

Let us assume that the non-logical constants of the logical language
are finite in number and are ordered.

• (1) height : e → dtall (2) human : e → t
(3) (≥) : r → r → t (4) \tall : dtall

• A context (^) is a tuple of type 𝛼1 × ... × 𝛼n, where 𝛼i is the type
of the ith constant.

• A context for this language would be of type
(e → dtall) × (e → t) × (r → r → t) × dtall .

9

Contexts

Let us assume that the non-logical constants of the logical language
are finite in number and are ordered.

• (1) height : e → dtall (2) human : e → t
(3) (≥) : r → r → t (4) \tall : dtall

• A context (^) is a tuple of type 𝛼1 × ... × 𝛼n, where 𝛼i is the type
of the ith constant.

• A context for this language would be of type
(e → dtall) × (e → t) × (r → r → t) × dtall .

9

A _-homomorphism in a context

Given some context ^:

LciM^ = ^i (ci is the ith constant)

LxM^ = x (variables)

L_x .MM^ = _x .LMM^ (abstractions)

LMNM^ = LMM^LNM^ (applications)

L〈M,N〉M^ = 〈LMM^, LNM^〉 (pairing)

LMiM^ = LMM^i (projection)

Etc. (�, logical constants)

10

A _-homomorphism in a context

Given some context ^:

LciM^ = ^i (ci is the ith constant)

LxM^ = x (variables)

L_x .MM^ = _x .LMM^ (abstractions)

LMNM^ = LMM^LNM^ (applications)

L〈M,N〉M^ = 〈LMM^, LNM^〉 (pairing)

LMiM^ = LMM^i (projection)

Etc. (�, logical constants)

10

Composing L·M^ with J·K

If we compose the logical interpretation with the _-homomorphism
in some context ^:

• LJsomeone is tallKM^ = ∃x : ^2(x) ∧ ^3(^1(x)) (^4)
• A truth value.

For example, say ^ = 〈height, human, (≥), d〉:

• LJsomeone is tallKM^ = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.

11

Composing L·M^ with J·K

If we compose the logical interpretation with the _-homomorphism
in some context ^:

• LJsomeone is tallKM^ = ∃x : ^2(x) ∧ ^3(^1(x)) (^4)

• A truth value.

For example, say ^ = 〈height, human, (≥), d〉:

• LJsomeone is tallKM^ = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.

11

Composing L·M^ with J·K

If we compose the logical interpretation with the _-homomorphism
in some context ^:

• LJsomeone is tallKM^ = ∃x : ^2(x) ∧ ^3(^1(x)) (^4)
• A truth value.

For example, say ^ = 〈height, human, (≥), d〉:

• LJsomeone is tallKM^ = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.

11

Composing L·M^ with J·K

If we compose the logical interpretation with the _-homomorphism
in some context ^:

• LJsomeone is tallKM^ = ∃x : ^2(x) ∧ ^3(^1(x)) (^4)
• A truth value.

For example, say ^ = 〈height, human, (≥), d〉:

• LJsomeone is tallKM^ = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.

11

Composing L·M^ with J·K

If we compose the logical interpretation with the _-homomorphism
in some context ^:

• LJsomeone is tallKM^ = ∃x : ^2(x) ∧ ^3(^1(x)) (^4)
• A truth value.

For example, say ^ = 〈height, human, (≥), d〉:

• LJsomeone is tallKM^ = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.

11

Composing L·M^ with J·K

If we compose the logical interpretation with the _-homomorphism
in some context ^:

• LJsomeone is tallKM^ = ∃x : ^2(x) ∧ ^3(^1(x)) (^4)
• A truth value.

For example, say ^ = 〈height, human, (≥), d〉:

• LJsomeone is tallKM^ = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.

11

Composing L·M^ with J·K

If we compose the logical interpretation with the _-homomorphism
in some context ^:

• LJsomeone is tallKM^ = ∃x : ^2(x) ∧ ^3(^1(x)) (^4)
• A truth value.

For example, say ^ = 〈height, human, (≥), d〉:

• LJsomeone is tallKM^ = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.

11

Composing L·M^ with J·K

If we compose the logical interpretation with the _-homomorphism
in some context ^:

• LJsomeone is tallKM^ = ∃x : ^2(x) ∧ ^3(^1(x)) (^4)
• A truth value.

For example, say ^ = 〈height, human, (≥), d〉:

• LJsomeone is tallKM^ = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.

11

Probabilistic programs

Definition

For any type 𝛼 , a function of type (𝛼 → r) → r returns values of
type 𝛼 .

• Consumes a projection function: some f of type 𝛼 → r .

• Results in an r , by summing/integrating f over the possible
values x of type 𝛼 , weighting each f (x) by the probability of x .

• E.g., N(`, 𝜎) : (dtall → r) → r

• Represents a normal distribution with mean ` and standard
deviation 𝜎 .

• N(`, 𝜎) (f) =
∫ ∞
−∞ PDFN(`,𝜎) (x) ∗ f (x)dx

12

Definition

For any type 𝛼 , a function of type (𝛼 → r) → r returns values of
type 𝛼 .

• Consumes a projection function: some f of type 𝛼 → r .

• Results in an r , by summing/integrating f over the possible
values x of type 𝛼 , weighting each f (x) by the probability of x .

• E.g., N(`, 𝜎) : (dtall → r) → r

• Represents a normal distribution with mean ` and standard
deviation 𝜎 .

• N(`, 𝜎) (f) =
∫ ∞
−∞ PDFN(`,𝜎) (x) ∗ f (x)dx

12

Definition

For any type 𝛼 , a function of type (𝛼 → r) → r returns values of
type 𝛼 .

• Consumes a projection function: some f of type 𝛼 → r .

• Results in an r , by summing/integrating f over the possible
values x of type 𝛼 , weighting each f (x) by the probability of x .

• E.g., N(`, 𝜎) : (dtall → r) → r

• Represents a normal distribution with mean ` and standard
deviation 𝜎 .

• N(`, 𝜎) (f) =
∫ ∞
−∞ PDFN(`,𝜎) (x) ∗ f (x)dx

12

Definition

For any type 𝛼 , a function of type (𝛼 → r) → r returns values of
type 𝛼 .

• Consumes a projection function: some f of type 𝛼 → r .

• Results in an r , by summing/integrating f over the possible
values x of type 𝛼 , weighting each f (x) by the probability of x .

• E.g., N(`, 𝜎) : (dtall → r) → r

• Represents a normal distribution with mean ` and standard
deviation 𝜎 .

• N(`, 𝜎) (f) =
∫ ∞
−∞ PDFN(`,𝜎) (x) ∗ f (x)dx

12

Definition

For any type 𝛼 , a function of type (𝛼 → r) → r returns values of
type 𝛼 .

• Consumes a projection function: some f of type 𝛼 → r .

• Results in an r , by summing/integrating f over the possible
values x of type 𝛼 , weighting each f (x) by the probability of x .

• E.g., N(`, 𝜎) : (dtall → r) → r

• Represents a normal distribution with mean ` and standard
deviation 𝜎 .

• N(`, 𝜎) (f) =
∫ ∞
−∞ PDFN(`,𝜎) (x) ∗ f (x)dx

12

Definition

For any type 𝛼 , a function of type (𝛼 → r) → r returns values of
type 𝛼 .

• Consumes a projection function: some f of type 𝛼 → r .

• Results in an r , by summing/integrating f over the possible
values x of type 𝛼 , weighting each f (x) by the probability of x .

• E.g., N(`, 𝜎) : (dtall → r) → r

• Represents a normal distribution with mean ` and standard
deviation 𝜎 .

• N(`, 𝜎) (f) =
∫ ∞
−∞ PDFN(`,𝜎) (x) ∗ f (x)dx

12

Some nice things about probabilistic programs (pt. 1)

You can turn any value (of any type 𝛼) into a trivial probabilistic
program that returns just that value:

[: 𝛼 → (𝛼 → r) → r (‘return’)

[(a) = _f .f (a)

E.g., [(jp) = _f .f (jp):

• The probabilistic program that returns Jean-Philippe with a
probability of 1.

13

Some nice things about probabilistic programs (pt. 1)

You can turn any value (of any type 𝛼) into a trivial probabilistic
program that returns just that value:

[: 𝛼 → (𝛼 → r) → r (‘return’)

[(a) = _f .f (a)

E.g., [(jp) = _f .f (jp):

• The probabilistic program that returns Jean-Philippe with a
probability of 1.

13

Some nice things about probabilistic programs (pt. 1)

You can turn any value (of any type 𝛼) into a trivial probabilistic
program that returns just that value:

[: 𝛼 → (𝛼 → r) → r (‘return’)

[(a) = _f .f (a)

E.g., [(jp) = _f .f (jp):

• The probabilistic program that returns Jean-Philippe with a
probability of 1.

13

Some nice things about probabilistic programs (pt. 1)

You can turn any value (of any type 𝛼) into a trivial probabilistic
program that returns just that value:

[: 𝛼 → (𝛼 → r) → r (‘return’)

[(a) = _f .f (a)

E.g., [(jp) = _f .f (jp):

• The probabilistic program that returns Jean-Philippe with a
probability of 1.

13

Some nice things about probabilistic programs (pt. 2)

You can pass the value returned by a probabilistic program m to a
function k from values to probabilistic programs, in order to make a
bigger, sequenced probabilistic program.

(★) : ((𝛼 → r) → r) → (‘bind’)

(𝛼 → (𝛽 → r) → r) →
(𝛽 → r) → r

m★ k = _f .m(_x .k (x) (f))

“Run m, computing x . Then feed x to k."

14

Some nice things about probabilistic programs (pt. 2)

You can pass the value returned by a probabilistic program m to a
function k from values to probabilistic programs, in order to make a
bigger, sequenced probabilistic program.

(★) : ((𝛼 → r) → r) → (‘bind’)

(𝛼 → (𝛽 → r) → r) →
(𝛽 → r) → r

m★ k = _f .m(_x .k (x) (f))

“Run m, computing x . Then feed x to k."

14

Some nice things about probabilistic programs (pt. 2)

You can pass the value returned by a probabilistic program m to a
function k from values to probabilistic programs, in order to make a
bigger, sequenced probabilistic program.

(★) : ((𝛼 → r) → r) → (‘bind’)

(𝛼 → (𝛽 → r) → r) →
(𝛽 → r) → r

m★ k = _f .m(_x .k (x) (f))

“Run m, computing x . Then feed x to k."

14

Building probabilistic programs

We may now build probabilistic programs that return contexts.

• If a context is of type 𝛼1 × ... × 𝛼n, then we seek a probabilistic
program K of type (𝛼1 × ... × 𝛼n → r) → r .

• Then, for a sentence 𝜙 in the logical language, we may do:

K ★ _^.[(L𝜙M^) : (t → r) → r

15

Building probabilistic programs

We may now build probabilistic programs that return contexts.

• If a context is of type 𝛼1 × ... × 𝛼n, then we seek a probabilistic
program K of type (𝛼1 × ... × 𝛼n → r) → r .

• Then, for a sentence 𝜙 in the logical language, we may do:

K ★ _^.[(L𝜙M^) : (t → r) → r

15

Building probabilistic programs

We may now build probabilistic programs that return contexts.

• If a context is of type 𝛼1 × ... × 𝛼n, then we seek a probabilistic
program K of type (𝛼1 × ... × 𝛼n → r) → r .

• Then, for a sentence 𝜙 in the logical language, we may do:

K ★ _^.[(L𝜙M^) : (t → r) → r

15

Up next

Natural language _-calculus

Probabilistic
programs

Degree of
belief

J·K

L·M^∼Distr

Expected
value

16

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(_b.1)

• 1 : t → r is an indicator function:

• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• _b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

17

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(_b.1)

• 1 : t → r is an indicator function:

• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• _b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

17

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(_b.1)

• 1 : t → r is an indicator function:

• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• _b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

17

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(_b.1)

• 1 : t → r is an indicator function:

• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• _b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

17

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(_b.1)

• 1 : t → r is an indicator function:

• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• _b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

17

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(_b.1)

• 1 : t → r is an indicator function:
• 1(>) = 1

• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• _b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

17

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(_b.1)

• 1 : t → r is an indicator function:
• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• _b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

17

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(_b.1)

• 1 : t → r is an indicator function:
• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.

• _b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

17

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(_b.1)

• 1 : t → r is an indicator function:
• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• _b.1 picks out the total mass (assigned to > and ⊥).

• So, P (p) is the probability that p returns >.

17

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(_b.1)

• 1 : t → r is an indicator function:
• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• _b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

17

An example

(1) Someone is tall.

Say our constants are:

1. height : e → dtall

2. human : e → t

3. (≥) : r → r → t

4. \tall : dtall

Define K as:

K = N(72, 3) ★ _d .[(height, human, (≥), d)

18

An example

(1) Someone is tall.

Say our constants are:

1. height : e → dtall

2. human : e → t

3. (≥) : r → r → t

4. \tall : dtall

Define K as:

K = N(72, 3) ★ _d .[(height, human, (≥), d)

18

An example

(1) Someone is tall.

Say our constants are:

1. height : e → dtall

2. human : e → t

3. (≥) : r → r → t

4. \tall : dtall

Define K as:

K = N(72, 3) ★ _d .[(height, human, (≥), d)

18

An example (cont’d)

K ★ _^.[(L∃x : human(x) ∧ height(x) ≥ \tallM^)

...

= _f .N(72, 3) (_d .f (∃x : human(x) ∧ height (x) ≥ d))

= _f .
∫ ∞

−∞
PDFN(72,3) (y) ∗ f (∃x : human(x) ∧ height (x) ≥ y)dy

19

An example (cont’d)

K ★ _^.[(L∃x : human(x) ∧ height(x) ≥ \tallM^)
...

= _f .N(72, 3) (_d .f (∃x : human(x) ∧ height (x) ≥ d))

= _f .
∫ ∞

−∞
PDFN(72,3) (y) ∗ f (∃x : human(x) ∧ height (x) ≥ y)dy

19

An example (cont’d) (cont’d)

Computing a probability:

∫ ∞
−∞ PDFN(72,3) (y) ∗ 1(∃x : human(x) ∧ height (x) ≥ y)dy∫ ∞

−∞ PDFN(72,3) (y)dy

=

∫ ∞

−∞
PDFN(72,3) (y) ∗ 1(∃x : human(x) ∧ height (x) ≥ y)dy

. . . the mass of N(72, 3) less than or equal to the height of the tallest
human

20

An example (cont’d) (cont’d)

Computing a probability:∫ ∞
−∞ PDFN(72,3) (y) ∗ 1(∃x : human(x) ∧ height (x) ≥ y)dy∫ ∞

−∞ PDFN(72,3) (y)dy

=

∫ ∞

−∞
PDFN(72,3) (y) ∗ 1(∃x : human(x) ∧ height (x) ≥ y)dy

. . . the mass of N(72, 3) less than or equal to the height of the tallest
human

20

An example (cont’d) (cont’d)

Computing a probability:∫ ∞
−∞ PDFN(72,3) (y) ∗ 1(∃x : human(x) ∧ height (x) ≥ y)dy∫ ∞

−∞ PDFN(72,3) (y)dy

=

∫ ∞

−∞
PDFN(72,3) (y) ∗ 1(∃x : human(x) ∧ height (x) ≥ y)dy

. . . the mass of N(72, 3) less than or equal to the height of the tallest
human

20

An example (cont’d) (cont’d)

Computing a probability:∫ ∞
−∞ PDFN(72,3) (y) ∗ 1(∃x : human(x) ∧ height (x) ≥ y)dy∫ ∞

−∞ PDFN(72,3) (y)dy

=

∫ ∞

−∞
PDFN(72,3) (y) ∗ 1(∃x : human(x) ∧ height (x) ≥ y)dy

. . . the mass of N(72, 3) less than or equal to the height of the tallest
human

20

An example (cont’d) (cont’d)

Computing a probability:∫ ∞
−∞ PDFN(72,3) (y) ∗ 1(∃x : human(x) ∧ height (x) ≥ y)dy∫ ∞

−∞ PDFN(72,3) (y)dy

=

∫ ∞

−∞
PDFN(72,3) (y) ∗ 1(∃x : human(x) ∧ height (x) ≥ y)dy

. . . the mass of N(72, 3) less than or equal to the height of the tallest
human

20

Bayesian inference (e.g., RSA)

RSA

RSA models: a popular application of probabilistic semantics.

The basic idea:

• The RSA framework models a pragmatic listener, L1. . .

• . . .who infers a distribution over meanings m from an uerance
u, based on the probability that a pragmatic speaker, S1, would
make the uerance u to convey m.

• Given a meaning m, the probability that S1 would make the
uerance u to convey m is related to the probability that a
literal listener, L0, would infer m, given a literal interpretation
of u.

21

RSA

RSA models: a popular application of probabilistic semantics.
The basic idea:

• The RSA framework models a pragmatic listener, L1. . .

• . . .who infers a distribution over meanings m from an uerance
u, based on the probability that a pragmatic speaker, S1, would
make the uerance u to convey m.

• Given a meaning m, the probability that S1 would make the
uerance u to convey m is related to the probability that a
literal listener, L0, would infer m, given a literal interpretation
of u.

21

RSA

RSA models: a popular application of probabilistic semantics.
The basic idea:

• The RSA framework models a pragmatic listener, L1. . .

• . . .who infers a distribution over meanings m from an uerance
u, based on the probability that a pragmatic speaker, S1, would
make the uerance u to convey m.

• Given a meaning m, the probability that S1 would make the
uerance u to convey m is related to the probability that a
literal listener, L0, would infer m, given a literal interpretation
of u.

21

RSA

RSA models: a popular application of probabilistic semantics.
The basic idea:

• The RSA framework models a pragmatic listener, L1. . .

• . . .who infers a distribution over meanings m from an uerance
u, based on the probability that a pragmatic speaker, S1, would
make the uerance u to convey m.

• Given a meaning m, the probability that S1 would make the
uerance u to convey m is related to the probability that a
literal listener, L0, would infer m, given a literal interpretation
of u.

21

RSA

RSA models: a popular application of probabilistic semantics.
The basic idea:

• The RSA framework models a pragmatic listener, L1. . .

• . . .who infers a distribution over meanings m from an uerance
u, based on the probability that a pragmatic speaker, S1, would
make the uerance u to convey m.

• Given a meaning m, the probability that S1 would make the
uerance u to convey m is related to the probability that a
literal listener, L0, would infer m, given a literal interpretation
of u.

21

Factoring by a weight / observing a premise

factor : r → (� → r) → r

factor (x) (f) = x ∗ f (�)

observe : t → (� → r) → r)
observe(𝜙) (f) = factor (1(𝜙)) (f)

= 1(𝜙) ∗ f (�)

22

Factoring by a weight / observing a premise

factor : r → (� → r) → r

factor (x) (f) = x ∗ f (�)

observe : t → (� → r) → r)
observe(𝜙) (f) = factor (1(𝜙)) (f)

= 1(𝜙) ∗ f (�)

22

RSA: implementation

Say the type of the context is ^ = 𝛼1 × ... × 𝛼n. . .

L0 : u → (^ → r) → r

L0(u) = K ★ _^.observe(LuM^) ★ _�.[(^)

S1 : ^ → (u → r) → r

S1(^) = U ★ _u.factor (PDFL0 (u) (^)𝛼) ★ _�.[(u)

L1 : u → (^ → r) → r

L1(u) = K ★ _^.factor (PDFS1 (^) (u)) ★ _�.[(^)

23

RSA: implementation

Say the type of the context is ^ = 𝛼1 × ... × 𝛼n. . .

L0 : u → (^ → r) → r

L0(u) = K ★ _^.observe(LuM^) ★ _�.[(^)

S1 : ^ → (u → r) → r

S1(^) = U ★ _u.factor (PDFL0 (u) (^)𝛼) ★ _�.[(u)

L1 : u → (^ → r) → r

L1(u) = K ★ _^.factor (PDFS1 (^) (u)) ★ _�.[(^)

23

RSA: implementation

Say the type of the context is ^ = 𝛼1 × ... × 𝛼n. . .

L0 : u → (^ → r) → r

L0(u) = K ★ _^.observe(LuM^) ★ _�.[(^)

S1 : ^ → (u → r) → r

S1(^) = U ★ _u.factor (PDFL0 (u) (^)𝛼) ★ _�.[(u)

L1 : u → (^ → r) → r

L1(u) = K ★ _^.factor (PDFS1 (^) (u)) ★ _�.[(^)

23

RSA: implementation

Say the type of the context is ^ = 𝛼1 × ... × 𝛼n. . .

L0 : u → (^ → r) → r

L0(u) = K ★ _^.observe(LuM^) ★ _�.[(^)

S1 : ^ → (u → r) → r

S1(^) = U ★ _u.factor (PDFL0 (u) (^)𝛼) ★ _�.[(u)

L1 : u → (^ → r) → r

L1(u) = K ★ _^.factor (PDFS1 (^) (u)) ★ _�.[(^)

23

RSA: implementation

Say the type of the context is ^ = 𝛼1 × ... × 𝛼n. . .

L0 : u → (^ → r) → r

L0(u) = K ★ _^.observe(LuM^) ★ _�.[(^)

S1 : ^ → (u → r) → r

S1(^) = U ★ _u.factor (PDFL0 (u) (^)𝛼) ★ _�.[(u)

L1 : u → (^ → r) → r

L1(u) = K ★ _^.factor (PDFS1 (^) (u)) ★ _�.[(^)

23

RSA: implementation

Say the type of the context is ^ = 𝛼1 × ... × 𝛼n. . .

L0 : u → (^ → r) → r

L0(u) = K ★ _^.observe(LuM^) ★ _�.[(^)

S1 : ^ → (u → r) → r

S1(^) = U ★ _u.factor (PDFL0 (u) (^)𝛼) ★ _�.[(u)

L1 : u → (^ → r) → r

L1(u) = K ★ _^.factor (PDFS1 (^) (u)) ★ _�.[(^)

23

RSA: implementation

Say the type of the context is ^ = 𝛼1 × ... × 𝛼n. . .

L0 : u → (^ → r) → r

L0(u) = K ★ _^.observe(LuM^) ★ _�.[(^)

S1 : ^ → (u → r) → r

S1(^) = U ★ _u.factor (PDFL0 (u) (^)𝛼) ★ _�.[(u)

L1 : u → (^ → r) → r

L1(u) = K ★ _^.factor (PDFS1 (^) (u)) ★ _�.[(^)

23

Conclusion

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed _-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• RSA models (also, semantic learning)

. . . using the same logical language one uses to characterize
linguistic meanings.

24

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed _-calculus

• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• RSA models (also, semantic learning)

. . . using the same logical language one uses to characterize
linguistic meanings.

24

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed _-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• RSA models (also, semantic learning)

. . . using the same logical language one uses to characterize
linguistic meanings.

24

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed _-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• RSA models (also, semantic learning)

. . . using the same logical language one uses to characterize
linguistic meanings.

24

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed _-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• RSA models (also, semantic learning)

. . . using the same logical language one uses to characterize
linguistic meanings.

24

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed _-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations

• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• RSA models (also, semantic learning)

. . . using the same logical language one uses to characterize
linguistic meanings.

24

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed _-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• RSA models (also, semantic learning)

. . . using the same logical language one uses to characterize
linguistic meanings.

24

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed _-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)

• RSA models (also, semantic learning)

. . . using the same logical language one uses to characterize
linguistic meanings.

24

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed _-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• RSA models (also, semantic learning)

. . . using the same logical language one uses to characterize
linguistic meanings.

24

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed _-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• RSA models (also, semantic learning)

. . . using the same logical language one uses to characterize
linguistic meanings.

24

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed _-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• RSA models (also, semantic learning)

. . . using the same logical language one uses to characterize
linguistic meanings. 24

References i

References

Goodman, Noah D., and Michael C. Frank. 2016. Pragmatic
Language Interpretation as Probabilistic Inference. Trends in
Cognitive Sciences 20:818–829.

Goodman, Noah D., Vikash K. Mansinghka, Daniel Roy, Keith
Bonawitz, and Joshua B. Tenenbaum. 2008. Church: a language
for generative models. In Proceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligence, UAI’08,
220–229. Arlington, Virginia, USA: AUAI Press.

25

References ii

Goodman, Noah D., and Andreas Stuhlmüller. 2013. Knowledge and
Implicature: Modeling Language Understanding as Social
Cognition. Topics in Cognitive Science 5:173–184.

Lassiter, Daniel, and Noah D. Goodman. 2013. Context, scale
structure, and statistics in the interpretation of positive-form
adjectives. Semantics and Linguistic Theory 23:587–610. Number:
0.

Lassiter, Daniel, and Noah D. Goodman. 2017. Adjectival vagueness
in a Bayesian model of interpretation. Synthese 194:3801–3836.

26

	Motivation
	Formal semantics
	The probabilistic interpretation
	Probabilistic programs
	Bayesian inference (e.g., RSA)
	Conclusion
	References

