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Vagueness

(1) The coffee in Rome is expensive. (Kennedy 2007)

J(1)K = cost(coffeeInRome) ≥ d (where d is “vague”)

Vague predicates, such as expensive

• admit borderline cases

• Mud Blend: $1.50/lb ✗

• Organic Kona: $20/lb ✓

• Swell Start Blend: $9.25/lb ??

• produce sorites paradoxes:

P1. A $5 cup of coffee is expensive.

P2. If an expensive cup of coffee were 1 cent cheaper, it would

still be expensive.

C. Therefore, a free cup of coffee is expensive.
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Metalinguistic uncertainty

(2) The road is a metric mile long.

(metric mile. . . somewhere between a kilometer and a (statute) mile)

J(2)K = length(road) ≥ d (where d is “uncertain”)

Predicates producing metalinguistic uncertainty, such as metric mile

• do not admit borderline cases as easily. . .

• do not produce sorites paradoxes:

P1. A 1-mile road is at least a metric mile long.

P2. If a road at least 1 metric mile long were 1 mm shorter, it

would still be at least a metric mile long. ✗
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Sorites-like imprecision for uncertainty

However, Lassiter (2011) argues that uncertain factual knowledge

can display sorites-like behavior:

‘There is no real number r such that my belief state allows for
the possibility that Big Ben and the Eiffel Tower are r kilo-
meters apart, but excludes the possibility that they are r ± 𝜖

kilometers apart for sufficiently small 𝜖 .’

Still not accessible to sorites arguments. . .

P2. If the Big Ben and Eiffel Tower are r km apart, then they are also

1 mm less then r km apart. ✗
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Vague parameters are resistant to being made precise

(5) # A $4.00 cup of coffee is expensive, but a $3.99 cup of coffee is

not expensive.

In contrast, uncertain knowledge can be made certain:

(6) A .93-mile road is 1 metric mile, but a .92-mile road is not 1

metric mile.
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Vague parameters support entailments

(3) P1. The coffee in Rome is expensive.

P2. The coffee in Gothenburg is more expensive than the coffee

in Rome.

C. The coffee in Gothenburg is expensive.

This is common to vagueness and metalinguistic uncertainty:

(4) P1. Kenrick Road is at least 1 metric mile long.

P2. East Henrietta is longer than Kenrick.

C. East Henrietta is at least 1 metric mile long.

In both cases d is held constant for the purpose of supporting the

entailment from P1 and P2 to C.
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Summary

Vagueness Metalinguistic uncertainty

Sorites ✓ ✗

Resistance to precisification ✓ ✗

Support entailments ✓ ✓

The first two rows suggest that vague parameters are under the

control of the surrounding discourse. Surrounding linguistic

material modifies them without trouble:

• if . . . then for sorites

• clause boundaries (perhaps) in the attempted precisification

examples

Row 3 suggests that they can be held fixed in certain cases.
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Plan

The plan: characterize both vagueness and metalinguistic

uncertainty as outcomes of semantic knowledge being probabilistic

in nature (Lassiter 2011; Lassiter and Goodman 2013, 2017, i.a.).

• in a pure logical setting, where probabilistic semantic

knowledge gives rise to an applicative functor

• and by relying on the composition of applicative functors in

order to get a handle on the semantic separation between

vagueness and uncertainty
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Probabilistic semantics via
probabilistic programs



Definition of a probabilistic program

For any type 𝛼 , a function of type (𝛼 → r) → r returns values of
type 𝛼 .

• Consumes a projection function: some f of type 𝛼 → r .

• Results in an r , by summing f over the possible values x of type

𝛼 , weighting each f (x) by the probability of x .

Example: N(`, 𝜎) : (r → r) → r

• Represents a normal distribution with mean ` and standard

deviation 𝜎 .

• N(`, 𝜎) (f ) =
∫ ∞
−∞ PDFN(`,𝜎 ) (x) ∗ f (x)dx (f : r → r)

• Result: the weighted average (i.e., expected value) of f (x) across
the normally distributed values x .
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Assembling and using probabilistic programs

We would like to be able to build probabilistic programs representing

(vague/uncertain) meanings. We can do this using two ingredients:

• a method of turning ordinary logical meanings into

probabilistic programs

• a method of composing probabilistic programs together, similar

to how we compose ordinary natural language meanings by

functional application

9
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Probabilistic programs provide an applicative functor

It is convenient to abbreviate (𝛼 → r) → r as ‘ P(𝛼) ’, and to then

view P itself as a kind of map from types to types.

We can think of the type P(𝛼) of a probabilistic program as having

two parts:

1. a part that does probabilistic stuff, provided by the P

2. a part that does regular logical (or pure) stuff corresponding to

what the program returns, provided by the 𝛼

Viewed this way, the map P is what is known as an applicative
functor. This means two things. . .
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Applicative functors provide pure programs

First, it allows you to turn any value (of some type 𝛼) into a trivial

probabilistic program that returns just that value:

[ : 𝛼 → P(𝛼) (‘pure’)

[ (a) = _f .f (a)

Example:

coffeeInRome : e

(‘the coffee in Rome’)

[ (coffeeInRome) : P(e)
= _f .f (coffeeInRome) : (e → r) → r

(The probabilistic program that returns the coffee in Rome with a

probability of 1.)
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Applicative functors allow you to compose programs together

Given programs

• m : P(𝛼 → 𝛽)
• n : P(𝛼)

you can compose m and n by feeding the values returned by n to the
functions returned by m.

(�) : P(𝛼 → 𝛽) → P(𝛼) → P(𝛽) (‘sequential application’)

m � n = _f .m(_x .n(_y .f (x (y))))

“Run m to compute x . Then run n to compute y . Then apply x to y .”

12
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Computing probabilities

Given a probabilistic program m of type P(t) (i.e., returning truth
values), we may use it to compute a probability:

Pr : P(t) → r

Pr (m) = m(1)
m(_b.1)

• 1 : t → r is an indicator function:

• 1(⊤) = 1

• 1(⊥) = 0

• In the above, it picks out the mass assigned to ⊤.
• m(_b.1) is the measure of m: it is m’s total mass.
• So, Pr (m) is the probability that m returns ⊤.
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Probabilistic semantics for
vagueness



An example

(1) The coffee in Rome is expensive.

Jthe coffee in RomeK : P(e)
Jthe coffee in RomeK = [ (coffeeInRome)

JexpensiveK : P(e → t)
JexpensiveK = _f .N(`exp, 𝜎exp) (_d .f (_x .cost(x) ≥ d))

J(1)K : P(t)
J(1)K = JexpensiveK � Jthe coffee in RomeK

= _f .N(`exp, 𝜎exp) (_d .f (cost(coffeeInRome) ≥ d))

If, for example, cost(coffeeInRome) = `exp, then Pr (J(1)K) = 0.5.
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Sorites

(5) If an expensive cup of coffee were 1 cent cheaper, it would still

be expensive.

We need a meaning for if ‼
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Factoring by a weight / observing a premise

factor : r → P(⋄)

factor (x) (f ) = x ∗ f (⋄)

observe : r → P(⋄)
observe(𝜙) (f ) = factor (1(𝜙)) (f )

= 1(𝜙) ∗ f (⋄)
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Sorites (cont’d 1)

(5) If an expensive cup of coffee were 1 cent cheaper, it would still

be expensive.

JifK : (w → t) → (w → t) → P(w) → t

w is the type of possible worlds (of some kind, e.g., degrees of cost)

JifK(𝜙) (𝜓 ) (mb) =

Pr (_f .mb(_w .observe(𝜙 (w)) (_⋄.f (𝜓 (w))))) ≥ rcertainty

“Given some distribution over worlds mb, the probability that𝜓 is

true after filtering out the worlds where 𝜙 is false is greater than

some required threshold of certainty rcertainty .”

17



Sorites (cont’d 1)

(5) If an expensive cup of coffee were 1 cent cheaper, it would still

be expensive.

JifK : (w → t) → (w → t) → P(w) → t

w is the type of possible worlds (of some kind, e.g., degrees of cost)

JifK(𝜙) (𝜓 ) (mb) =

Pr (_f .mb(_w .observe(𝜙 (w)) (_⋄.f (𝜓 (w))))) ≥ rcertainty

“Given some distribution over worlds mb, the probability that𝜓 is

true after filtering out the worlds where 𝜙 is false is greater than

some required threshold of certainty rcertainty .”

17



Sorites (cont’d 1)

(5) If an expensive cup of coffee were 1 cent cheaper, it would still

be expensive.

JifK : (w → t) → (w → t) → P(w) → t

w is the type of possible worlds (of some kind, e.g., degrees of cost)

JifK(𝜙) (𝜓 ) (mb) =

Pr (_f .mb(_w .observe(𝜙 (w)) (_⋄.f (𝜓 (w))))) ≥ rcertainty

“Given some distribution over worlds mb, the probability that𝜓 is

true after filtering out the worlds where 𝜙 is false is greater than

some required threshold of certainty rcertainty .”

17



Sorites (cont’d 1)

(5) If an expensive cup of coffee were 1 cent cheaper, it would still

be expensive.

JifK : (w → t) → (w → t) → P(w) → t

w is the type of possible worlds (of some kind, e.g., degrees of cost)

JifK(𝜙) (𝜓 ) (mb) =

Pr (_f .mb(_w .observe(𝜙 (w)) (_⋄.f (𝜓 (w))))) ≥ rcertainty

“Given some distribution over worlds mb, the probability that𝜓 is

true after filtering out the worlds where 𝜙 is false is greater than

some required threshold of certainty rcertainty .”

17



Sorites (cont’d 1)

(5) If an expensive cup of coffee were 1 cent cheaper, it would still

be expensive.

JifK : (w → t) → (w → t) → P(w) → t

w is the type of possible worlds (of some kind, e.g., degrees of cost)

JifK(𝜙) (𝜓 ) (mb) =

Pr (_f .mb(_w .observe(𝜙 (w)) (_⋄.f (𝜓 (w))))) ≥ rcertainty

“Given some distribution over worlds mb, the probability that𝜓 is

true after filtering out the worlds where 𝜙 is false is greater than

some required threshold of certainty rcertainty .”
17



Sorites (cont’d 2)

(5) If an expensive cup of coffee were 1 cent cheaper, it would still

be expensive.

Let’s fix w to r × r — the type of pairs of degrees representing costs.

• r on the left: represents the cost of different cups of coffee

• r on the right: represents the threshold for expensive

Jan expensive cup were 1 cent cheaperK : r × r → t
Jan expensive cup were 1 cent cheaperK = _⟨d, d ′⟩.d ≥ d ′ − 0.01

Jit would still be expensiveK : r × r → t
Jit would still be expensiveK = _⟨d, d ′⟩.d ≥ d ′

18
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Sorites (cont’d 3)

(5) If an expensive cup of coffee were 1 cent cheaper, it would still

be expensive.

J(5)K : t
J(5)K = Pr (_f .mb(_⟨d, d ′⟩.1(d ≥ d ′ − 0.01) ∗ f (d ≥ d ′))) ≥ rcertainty

“If you take the mass of mb where d ≥ d ′ − 0.01, the proportion of

this mass where d ≥ d ′, as well, is greater than the certainty

threshold.”

For example, if d and d ′ are independently normally distributed

with the same mean, this will always be ≥ 0.5. For 𝜎 = 1, it is > 0.99.
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Entailments

(3) P1. The coffee in Rome is expensive.

P2. The coffee in Gothenburg is more expensive than the coffee

in Rome.

C. The coffee in Gothenburg is expensive.

We need an operation to perform discourse update:

update : P(w) → (w → t) → P(w)
update(c) (𝜙) = _f .c(_w .observe(𝜙 (w)) (_⋄.f (w)))

“Given a starting discourse c and a proposition 𝜙 to update it with,

update(c) (𝜙) is just like c, except that worlds where 𝜙 is false are

assigned a probability of 0.”

20
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Entailments (cont’d 1)

(3) P1. The coffee in Rome is expensive.

P2. The coffee in Gothenburg is more expensive than the coffee

in Rome.

C. The coffee in Gothenburg is expensive.

In this case, let’s consider w to be r × r × r .

• the first r : represents the cost of coffee in Rome

• the second r : represents the cost of coffee in Gothenburg

• the third r : represents the threshold for expensive

JP1K : r × r × r → t
JP1K = _⟨r, g, d⟩.r ≥ d

JP2K : r × r × r → t
JP2K = _⟨r, g, d⟩.g > r
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Entailments (cont’d 2)

(3) P1. The coffee in Rome is expensive.

P2. The coffee in Gothenburg is more expensive than the coffee

in Rome.

C. The coffee in Gothenburg is expensive.

update(update(c) (JP1K)) (JP2K) =

_f .c(_⟨r, g, d⟩.1(r ≥ d) ∗ 1(g > r) ∗ f (r, g, d))

“The context just like c, except that the only worlds with non-zero

probabilities are those where r ≥ d and g > r (and, hence, g > d).”
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Summary

• Vague predicates are susceptible to sorites because of the

lexical semantics of certain surrounding linguistic expressions,

for example, if. Such expressions have higher-order meanings

that allow them to control vague parameters.

• Vague predicates support entailments that hold their

parameters fixed because of the semantics of discourse update.

The update operation keeps vague parameters in scope.

What makes metalinguistic uncertainty different?
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Probabilistic semantics for
metalinguistic uncertainty



Applicatives compose

A convenience of using applicative functors is that they compose:

If A1(𝛼) is an applicative and A2(𝛼) is an applicative, then A1(A2(𝛼))
is also an applicative.

Useful, because it allows us to think of metalinguistic uncertainty as

higher order: it is a property that our knowledge of any expression

can have, including vague ones.

This perspective can be reflected in the type of an expression with

metalinguistic uncertainty taken into account: rather than P(𝛼), it is
now of type P(P(𝛼)).

• Vagueness: P(P(𝛼))
• Uncertainty: P(P(𝛼))
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An example

(2) The road is a metric mile long.

Jthe roadK : P(P(e))
Jthe roadK = [ ([ (road))

Jmetric mile longK : P(P(e → t))
Jmetric mile longK = _f .N(`mm, 𝜎mm) (_d .f ([ (_x .length(x) ≥ d)))

J(2)K : P(P(t))
J(2)K = Jmetric mile longK � JroadK

= _f .N(`exp, 𝜎exp) (_d .f ([ (length(road) ≥ d)))
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Why no sorites?

The type provided for if: (w → t) → (w → t) → P(w) → t

Its third argument (the modal base) is not high-order enough.

Currently encoded as a brute lexical fact.

Hypothetical constraint on lexical meanings:

P(P(𝛼)) can’t occur in a negative position in an expression’s type.
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Entailments?

We need only adjust the type of the update, using [:

update : P(P(w) → (w → t) → P(w))
update = [ (_c, 𝜙, f .c(_w .observe(𝜙 (w)) (_⋄.f (w))))

27



Summary

Under the current picture, the phenomena of vagueness arise from

two aspects of semantic knowledge conspiring:

• the semantic types of linguistic expressions like if

• the encoding of vague probabilistic knowledge on an “inner”

applicative layer (P(P(𝛼)))

This makes room for some probabilistic knowledge not participate

in these phenomena — encode them on the “outer” layer (P(P(𝛼))).
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