Modeling the prompt in inference judgment

tasks

Julian Grove and Aaron Steven White

ELM 3 (University of Pennsylvania), June 13, 2024

FACTS.lab, Linguistics Department, University of Rochester



Joint work

Modeling the prompt in inference judgment tasks
Julian Grove & Aaron Steven White”

Abstract. We show that when analyzing data from inference judgment tasks, it can be
important to incorporate into one’s data analysis regime an explicit representation of
the semantics of the natural language prompt used to guide participants on the task.
To demonstrate this, we conduct two experiments within an existing experimental
paradigm focused on measuring factive inferences, while manipulating the prompt
participants receive in small but semantically potent ways. In statistical model com-
parison couched within the framework of probabilistic dynamic semantics, we find
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Motivation



Common practice

Inference judgments in formal experiments:

« Some target linguistic expression, along with a context.
« A natural language prompt.

+ A response instrument; e.g., a Likert scale, a slider scale, etc.
Models of inference data generally encode only representations of:
« the target expression plus context (via, e.g., model parameters).

« the response instrument (via, e.g., a link function or likelihood).

Today, we focus on the prompt.



What we’re advocating

We should think of an experimental trial as a little discourse.

Sentence 51
Sentence 52
etc....

Question prompt g

Low answer High answer

Nex |

We model this discourse using probabilistic dynamic semantics.
« Sentences: Start with a prior distribution over discourse states.
Update this prior with [s7], then [s2], etc.
« Question: Push [g] onto the QUD stack (Farkas and Bruce
2010; Roberts 2012).
« Answer: Pop [q] off the QUD stack; respond.

’ Upshot: probabilistic models of data and semantic analyses are one and the same. 3




Case study: factive predicates

Lots of recent experimental work on factive inferences.

See, e.g., Degen and Tonhauser (2021, 2022), Djarv and Bacovcin
(2017), Djarv, Zehr, and Schwarz (2018), and Grove and White
(2024).

(1) Jo loves that Mo Left.
~> Mo left.

Good case study because:

« Factivity is a rich discourse phenomenon with a nonetheless
clear inferential profile.
« Factive inferences, in aggregate, display substantial

gradience—a tricky phenomenon to analyze statistically.



« lllustrate the gradience exhibited by factive inferences in
formal experiments.

« Show that we can improve models of this gradience by
carefully representing the compositional semantics of the
prompt in models of inference judgment data.

+ Along the way, we illustrate data from two novel experiments

which vary the prompt in subtle, but semantically potent ways.



Gradience in inference experiments



Gradience

What sorts of inference patterns arise from uses of factive

predicates in an experimental setting?

+ E.g., if you ask someone to rate the likelihood that Mo left,
given that Jo loves that Mo left is true.



White and Rawlins (2018)

‘Someone {discovered, didn’t discover} that a particular thing
happened’

‘Did that thing happen?’

(yes, maybe or maybe not, no)



White and Rawlins (2018)
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Degen and Tonhauser (2022)

Helen asks: "Did Amanda discover that Danny ate the last cupcake?"

Is Helen certain that Danny ate the last cupcake?

no yes

| Nex |
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Possible sources of gradience

Sources of gradience

|
( \

’ Metalinguistic (type-level) ‘ ’ Occasional (token-level)
’—I—‘ _
( I \
Ambiguity  Discourse status Task effects ~ Vagueness ~ World knowledge

—t— | ——

Lex. Syn. Sem. QUD Resp. strategy Resp. Error

« Ambiguity: run (organizational) vs. run (locomotive)

+ Vagueness: X is tall ~> vagueness about X’s height

In probabilistic dynamic semantics, we can formalize this
distinction.



Modeling prompts dynamically




Main questions

« How do people represent their knowledge of factivity: is its

gradience metalinguistic or occasional?

Factivity, presupposition projection, and the role of discrete
knowledge in gradient inference judgments”

Julian Grove and Aaron Steven White
University of Rochester

Abstract We investigate whether the factive presuppositions th some clause-
embedding predicates are fundamentally discrete in nature

damentally gradient—as recently proposed (Tonhauser, Beaver, and Degen 2018). To carry

ssumed-—or fun-

Grove and White (2024): gradience in factivity is like
ambiguity, not vagueness.

« How should we capture the fine-grained semantics of the
prompt used in eliciting judgments?
« How does manipulating and modeling the prompt affect our

earlier findings?



Two experiments, differing only by the prompt used.
Following the paradigm of Degen and Tonhauser (2021).

Fact (which Nancy knows): Zoe is 5 years old. / Zoe is a math major.

Nancy asks: “Does Tim know that Zoe calculated the tip?”
» Experiment 1: How certain is Nancy that Zoe calculated the
tip?
« Experiment 2: How likely is it that Nancy is certain that Zoe
calculated the tip?



Experiment 1: the “how certain” task

Fact (which Nancy knows): Zoe is a math major..

Nancy asks: "Does Tim know that Zoe calculated the tip?"

How certain is Nancy that Zoe calculated the tip?

not at all certain completely certain

Next

« Start with a prior distribution over discourse states.
Update with [Zoe is a math major].
Update with [Tim knows that Zoe calculated the tip].

« Push [How certain is Nancy that Zoe calculated the tip?] onto
the QUD stack.

« Pop it off the QUD stack; respond with maximally informative

answer.



Semantics of ‘how certain is X that p’

« Assumption: while likely predicates of degrees on a probability
scale, certain predicates of degrees on a confidence scale
(Klecha 2012).

« In practice, the scale associated with certain is truncated at the
lower end, relative to the scale for likely.

certain
|
\ \ \
0 1

Ask about details in the Q&A!



Experiment 2: the “how likely ... certain” task

Fact (which Nancy knows): Zoe is a math major..

Nancy asks: "Does Tim know that Zoe calculated the tip?"

How likely is it that Nancy is certain that Zoe calculated the tip?

impossible definitely

o Start with a prior distribution over discourse states.
Update with [Zoe is a math major].
Update with [Tim knows that Zoe calculated the tip].

« Push [How likely is it that N is certain that Z calculated the tip?]
onto the QUD stack.

« Pop it off the stack; respond.



Semantics of ‘how likely is it that X is certain that p’

« Assumption: certain gives rise to a vague standard threshold,
and thus occasional uncertainty.
likely computes the probability of the vague inference.

« Perhaps, more appropriate to think of this standard as being
imprecise rather than vague....
assuming certain is a maximum standard adjective (see, e.g.,
Kennedy (2007) and Kennedy and McNally (2005)).



Results




The “how certain” task: comparing models

2500 ;
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E % I Gradience
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Semantics of prompt
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The “how likely ... certain” task: comparing models

2000

E Gradience
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Summing up




« Building on Grove and White (2024), we continue to find that
inferences from factive predicates exhibit gradience which is

metalinguistic in nature.

« When incorporating semantic analyses into our probabilistic

models, there is an advantage to going all the way!
+ The compositional semantics of the prompt matters.

« Probabilistic dynamic semantics allows us to seamlessly
incorporate it into our models of inference data.

20
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Appendix A: probabilistic dynamic

semantics




Ingredients

Typed A-calculus
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Example: tall

(1) Joistall.
~> Jo’s height exceeds some contextually salient threshold.

d ~ thresholdPrior
(Ax.height(x) > d|

[tall] = ( ) :P(e—>t)

d ~ thresholdPrior )
. Pt

o sl =

26



Appendix B: models, more formally




Norming task (Degen and Tonhauser 2021)

Fact: Zoe is 5 years old.

How likely is it that Zoe calculated the tip?

impossible definitely

« Slider endpoints denote bounds of the scale for likely.

1~ prior

' ~ updatecy (Aw.[Zoe is 5 y.0.] ") ()

X ~ [max(/ld.likely(d) (cg(i'))(Aw.[Zoe calculated the tip] W’/"))]
N(x,0)T[0, 1]

Which does the truth of Zoe calculated the tip depend on: w, or p’?
27



Norming task: comparing models
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Experiment 1: the “how certain” task

Fact (which Nancy knows): Zoe is a math major..

Nancy asks: "Does Tim know that Zoe calculated the tip?"

How certain is Nancy that Zoe calculated the tip?

not at all certain completely certain

Next

U ~ prior

wo~ updatecg()tw.[[Zoe is a math major]“"*)(p1)

{” ~ updatecg (Aw.[Tim knows Zoe calculated the tip] WY (1)

X ~ [max(/ld.certain(d)(cg(u”))(/lw.[[Zoe calculated the tip] W’””))]
N(x,0)T[0, 1]

Which does the truth of Zoe calculated the tip depend on:

w only? Or both w and p"’?
29



Experiment 2: the “how likely ... certain” task

Fact (which Nancy knows): Zoe is a math major..

Nancy asks: "Does Tim know that Zoe calculated the tip?"

How likely is it that Nancy is certain that Zoe calculated the tip?

impossible definitely

Next

[~ prior

wo~ updatecg()tw.[[Zoe is a math major]“"*)(p1)

p’ ~ update g (Aw.[Tim knows Zoe calculated the tip]**")(y')

X ~ [max(/ld.likely(d)(cg(,u”))(/lw.[[certain that Z calculated the tip]**"))
N(x,0)T[0,1]

Which does the truth of Zoe calculated the tip depend on:

w only? Or both w and p"’? 30



Appendix C: data




Experiment 1: the “how certain” task

acknowledge admit announce be annoyed be right
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obo o ofs 10 o ok ok o7 1bo o ok o 1bo 03 ok 03 ok
say see suggest think
25 p
20
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15
= 2
10 2
f
05 05 ! 1
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Experiment 2: the “how likely ... certain” task

acknowledge admit announce be annoyed be right

20
15
15 15
os 10 10 10
0s . s
00 o 00
o o ok o 0% ok 75 o oz ok o7 10 o ok ok 07 o0 0z o0k o7 1bo
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